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ABSTRACT: Divertors are required for handling the plasma particle and heat exhausts on the 

walls in fusion plasmas. Relatively simple methods are developed to study the plasma loss 

time and the interception pattern of the escaping plasma in divertor tokamaks using the field 

line Hamiltonian. The effects of the nonideal spiraling on the loss time and size of the 

footprint are studied. The DIII-D tokamak is chosen for the study. The complicated shape of 

the magnetic surfaces in the DIII-D is analytically represented by the equilibrium generating 

function. The surface that intercepts the escaping plasma is a plane orthogonal to the line 

from O-point to the X-point. The magnetic perturbation has mode numbers (m,n) = (3,1) + 

(4,1). The resonant perturbation produces islands and stochastic regions. The plasma particles 

start on the last good surface and on a good surface roughly midway between the last good 

surface and magnetic axis. Scaling of the loss time and the size of the footprint with the 

nonideal spiraling effects are estimated. 

 The DIII-D map is used here as a precursor to the study of effect of magnetic islands 

on stellarator diverters. Much of the importance of the study is island diverters for 

stellarators. The approach and results here could also be important for tokamaks with non-

axisymmetric perturbations. The DIII-D map just represents a typical tokamak divertor 

problem.   

  Outside of the last confining magnetic surface, field lines escape to the walls after a 

number of toroidal transits. The rate of direct loss of field lines is ( )d xν , where 1 dν/  is the 

number of toroidal transits required for a field line to reach the wall when started a distance 

x outside the last confining magnetic surface. The artificial spiraling constant, Ds, is a 

velocity in the x direction. It is the distance a field line moves in x  direction per toroidal 

transit. What will be shown is that when the rate of direct field line losses, vd(x), increases 

linearly with x, then the number of toroidal transits that are required for a field line to escape 

is 1 21 sDτ /∝ /  and when ( )d xν  increases cubically with x, then 3 41 sDτ /∝ / .  

 Assume a simulation is made by steadily introducing field lines at  at the rate 

. The steady-state solution for field lines spiraling out and being lost to the walls is  

0x =

0Γ
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 ( )d
d xn
dx
Γ
= − ;  (1) 

 ( ) ( ) sx n x DΓ = ;  (2) 

 ( ) ( ) ( )d dx x n xn ν= ,  (3) 

where the total number of field lines in the steady-state system is . The loss 

time is defined as 
0

( )N n x d
∞

= ∫ x

0Nτ ≡ /Γ .  
 A characteristic distance is  

 ( ) so
( )
s

d

D
x

xν
∆ ≡ ,  (5) 

 ( ) ( ) ( ) anddx x xnΓ = ∆ ,  (6) 

 0

0

( )

( )d

n x dx

x dxn
τ

∞

∞= .∫
∫

 (7) 

Equation (1) implies , so  ( )d dd dxn n∆ / = −

 ( )x
d en σ−∝ ;  (8) 

 
0

1( )
x d dxxσ + ∆/

≡
∆∫  (9) 

 0 0

1ln( )
x

dx= ∆/∆ + .
∆∫  (10) 

The implication is that  

 ( )0 x
d

c
en ζ−= ;

∆
 (11) 

 
0

1( )
x

x dxζ ≡
∆∫  (12) 

 ( ) where
s

u x
D

= ,  (13) 

 
0

( ) ( )
x

du x x dxν≡ .∫  (14) 

where c0 is a constant. It will be assumed that (d )xν  increases sufficiently rapidly with x  that 

(x )ζ → ∞ ich ensures all field lines are lost in the region 0x > en,  →∞ , wh  Th.

 00
( )d x dx cn

∞
= ,∫  (15) 

 ( )0

0 0
( ) x

s

c
n x dx e dx

D
ζ∞ ∞ −= ;∫ ∫  (16) 
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( )

0

x

s

e d

D

ζ

τ

∞ −

= ∫
x

 (17) 

 
( )( )

0
exp

s

u x
D

s

dx

D

∞
−

= .∫  (18) 

When the direct loss rate is proportional to distance, 0( )d x xν ν= ′  with 0ν ′  a constant, 

. Using 2
0( ) 2u x xν= /′ 2

0
( )exp s ds 2π

∞
− =∫ / ,  

 
0 sD
πτ

ν
= .

′
 (19) 

When the direct loss rate is proportional to distance cubed, 3
0( ) 6d x xν ν= /′′′  with 0ν ′′′  a 

constant, . Using ,  4
0( ) 24u x xν= /′′′ 4

0
( ) (5 4) 0 9064exp s ds

∞
− = Γ / ≈ .∫

 
1 4

0

24(5 4) s

s

D
D

τ
ν

/
Γ / ⎛ ⎞

= .⎜ ⎟′′′⎝ ⎠
 (20) 

The equilibrium genearting function (EGF) for the DIII-D is very complicated. The analytic 

representation of the DIII-D EGF in natural canonical coordinates (NCC) and the forward, 

backward, and continuous symplectic maps for  the DIII-D in NCC are given in [1,2]. The 

form of the spiralling operator Ds is r → r+(0.9+2RN)Ds. RN is a random number in the 

interval (0,1]. 

 For the case of lines starting on a good surface midway between the O-point and the 

X-point, the maplitude of perturbation is δ=5E-4. In this case the loss time scales as Ds
-3/4 for 

both the forward and the backward lines. See Figs. 1-2. The area of the forward and 

backward footprint scales as Ds
1/4. See Figs. 3-4. These results are consistent with the 

prediction above when the direct loss is proportional to distnce cubed, Equation (20).  

 For the case of lines starting on the LGS, the maplitude of perturbation is δ=5E-3. In 

this case the loss time scales as Ds
-1/2 for both the forward and the backward lines. See Figs. 

5-6. The area of the forward and backward footprint scales as Ds
1/2. See Figs. 7-8. These 

results are consistent with the prediction above when the direct loss is proportional to distnce, 

Equation (19). 

 Simple model is developed to predict the loss time and the area of of the footprint of 

plasma particles in tokamaks. This model is applied to the DIII-D using the DIII-D map for 

the two cases of the lines atrating midway between the O-point and X-point and on the LGS 

in the DIII-D. The results of the computation are consistent with the predictions of the model. 
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Fig. 1. Loss time as a 

function of spiraling 

coefficient for forward lines 

when lines start midway 

between O-point and X-

point. 

Fig. 2. Loss time as a 

function of spiraling 

coefficient for backward 

lines when lines start 

midway between O-point 

and X-point. 

Fig. 3. The area of the 

footprint as a function of 

spiraling coefficient for 

forward lines when lines 

start midway between O-

point and X-point. 

Fig. 4. The area of footprint 

as a function of spiraling 

coefficient for backward 

lines when lines start 

midway between O-point 

and the X-point. 

   
Fig. 5. Loss time as a 

function of spiraling 

coefficient for forward lines 

when lines start on the LGS. 

Fig. 6. Loss time as a 

function of spiraling 

coefficient for backward 

lines when lines start on the 

LGS. 

Fig. 7. The area of the 

footprint as a function of 

spiraling coefficient for 

forward lines when lines 

start on the LGS. 

Fig. 8. The area of footprint 

as a function of spiraling 

coefficient for backward 

lines when lines start on the 

LGS. 
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