
Observation of the dynamo effect in a Reversed Field Pinch

R. Chahine1, W.J.T Bos1, N. Plihon2

1 LMFA, CNRS, Ecole Centrale de Lyon, Université de Lyon, Ecully, France
2 Laboratoire de Physique, CNRS, Ecole Normale Supérieure de Lyon, Lyon, France

Introduction

The tokamak and Reversed Field Pinch (RFP) fusion reactors are characterized by their sim-

ilar magnetic configuration: a toroidal magnetic field generated by the surrounding poloidal

coils combined with a strong toroidal current induced by the central solenoid. RFPs differ from

tokamaks by the magnitude of the poloidal magnetic field, which is of the same order as the

one of the toroidal magnetic field. Such a magnetic configuration is known to be susceptible

to MHD instabilities when the toroidal current Iz is increased above a certain threshold for a

given toroidal magnetic field Bz. These instabilities give in general rise to a complex chaotic

interplay of helical structures of different spatial frequency, reorganizing the plasma into a sta-

ble state where the toroidal component reverses close to the boundary. The generation of this

toroidal magnetic field, which has the originally imposed sign in the center and reversed close

to the boundary, is referred to as the dynamo effect, a term ’borrowed’ from astrophysics [1].

This phenomenon, observed first in early RFP experiments [1–3], is extensively studied using

different approaches. In [4] the parallel Ohm’s law was used to point out the diamagnetic ef-

fect, while in [5] mean field theory was used and an α-model was invoked to explain the RFP

reversal. It was also pointed out in [6] that cross-helicity plays a major role in the RFP dynamo.

Nevertheless, after the observation of quasi-single-helicity states in [7] in 2000, the dominant

electrostatic nature of the RFP dynamo was illustrated in [8, 9].

The astrophysical description of the dynamo effect, which plays a major role in the genera-

tion of celestial and planetary magnetic fields, is the phenomenon of amplification of a weak

magnetic field by the movement of a conducting fluid or plasma. However, the magnetic field

in RFP fusion plasma is never weak. In this communication we investigate whether the velocity

field of a RFP is capable of amplifying a weak magnetic field. We hereby reconcile the as-

trophysics and fusion community with respect to the presence, or not, of a dynamo in RFPs.

We consider the interaction of three vector-fields (as in [10]): the velocity field uuu, generated

by an MHD instability resulting from its interaction with the magnetic field BBB, and an initially

weak magnetic field DDD, passively advected by the velocity field uuu. The dynamics are investi-

gated using incompressible visco-resistive MHD simulations in cylindrical geometry [11] using

a pseudo-spectral solver [12]. First results show that the RFP velocity field acts as a dynamo,
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for sufficiently large magnetic Reynolds numbers.

Visco-resistive MHD equations

In the present work, we consider a plasma characterized by constant permeability µ , per-

mittivity ε and conductivity σ . In the magnetohydrodynamic (MHD) description that we con-

sider, the governing equations are the incompressible Navier-Stokes equations including the

Lorentz force, and the induction equation. Normalizing these quantities by the Alfvén velocity

CA = B0/
√

ρµ , a reference magnetic field B0 and a conveniently chosen lengthscale L leads

to the following expressions,

∂uuu
∂ t

+uuu ·∇uuu =−∇P+ jjj×BBB+ν∇
2uuu, (1)

and
∂BBB
∂ t

= ∇× (uuu×BBB)+λ∇
2BBB. (2)

where ν is the kinematic viscosity, λ the magnetic diffusivity, and ρ = 1 the density. The current

density is given by

jjj = ∇∇∇×BBB. (3)

The passive magnetic field’s evolution is described by the following induction equation,

∂DDD
∂ t

= ∇× (uuu×DDD)+λ
′
∇

2DDD. (4)

where λ ′ is the magnetic diffusivity corresponding to DDD. The velocity field uuu, the magnetic field

BBB and the passive magnetic field DDD are all divergence free,

∇∇∇ ·uuu = 0, (5)

∇∇∇ ·BBB = 0, (6)

∇∇∇ ·DDD = 0. (7)

In the plasma a uniform current density j0 in the z-direction and

an axial magnetic field Bz0 are imposed, resulting in a helically

shaped magnetic field. The current density j0 will induce a poloidal

magnetic field Bp0 parallel to the boundaries, where the velocity is

imposed to be zero. The value of the poloidal parallel magnetic

field at the boundary is fixed and its value is determined by j0.

Figure 1: Sketch of

the cylindrical ge-

ometry.

Equations (1),(2) and (4) are solved using a pseudo-spectral method in a periodic domain of

size π ×π × 4π with 256× 256× 1024 grid points. Boundary conditions are imposed using a

volume penalization method in order to build the cylindrical domain. Detailed description and
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validation of the method can be found in [12], and an application of the method to investigate

RFPs in toroidal domains is reported in previous work [11, 13]. The implementation of the

Dirichlet boundary condition for the passive magnetic field is identical to that of the velocity.

Results

We consider first the case where the velocity field is "frozen". This consists in using in equa-

tion (4) a time-invariant velocity field obtained by resolving first, equations (1) and (2) until

reaching a statistically stationary state. This is shown in Figure 2(a), where kinetic and mag-

netic energies evolve first to reach a stationary phase, then the frozen velocity field is taken at

t = 1500τA and simulations of equation (4) for different values of λ ′ are carried out. The ex-

ponential evolution of the passive magnetic energy 〈D2〉 shows wether the dynamo effect exists

(〈D2〉(t) is increasing) or not (〈D2〉(t) is decreasing). Figure 2(b) shows the different simula-

tions that allowed us to explore the critical Reynolds number R′m = uL /λ ′, above which the

dynamo effect is observed. The frozen velocity method is suitable for laminar flows with small

Lundquist number S =CAL /λ , where few kinetic modes dominate, and dynamo action is more

probable due to lack of kinetic fluctuations. Simulations of higher Lundquist number are carried

out using a dynamic velocity field, where equations (1), (2) and (4) are resolved simultaneously.

Figure 3(a) shows the evolution of different modes’ energy for S≈ 4000 and R′m ≈ 220. For the

passive magnetic energy, mode n = 1 is dominant for t > 200τA, while different kinetic modes
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Figure 2: (a) Evolution of the kinetic and magnetic energies for S ∼ 1000, and of the passive

magnetic energy for different R′m = uL /λ ′, (b) different runs function of S and R′m . Empty

squares are the non-dynamo cases.
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Figure 3: (a) Evolution of different normalized toroidal modes for S ∼ 4000 and R′m = 220, (b)

isosurfaces of kinetic (red), magnetic (blue) and passive magnetic (green) energies.

dominate during this period. Hence no clear correlation observed between kinetic and passive

magnetic modes. The 3D visualization in figure 3(b) shows that DDD has a helical structure similar

to that of uuu.

Conclusion

In the present work we investigated wether the RFP velocity field acts as a true dynamo or

not, and hence reconcile the fusion and astrophysical communities. Results show that the RFP

velocity field is able of amplifying a weak magnetic field, and thereby proves the existence of a

dynamo effect, even in the astrophysical sense.
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