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1. Introduction

In the recent experiments in the Large Helical Device (LHD), it is observed that the magnetic

perturbation grows rapidly just after the mode rotation stops and causes a partial collapse of the

electron temperature[1]. This phenomenon indicates the possibility that the plasma rotation can

suppress the growth of the mode. Thus, we numerically study the rotation effects on the MHD

stability against the interchange modes in the LHD configuration. As the numerical procedure,

we employ a static equilibrium and apply a global shear flow as the rotation to the initial per-

turbation in the stability calculation. The three-dimensional (3D) numerical codes of HINT[2]

and MIPS[3] are utilized for the equilibrium and the stability calculations, respectively. In the

original study of the flow effects[4], a model profile is utilized for the flow, and a sample equi-

librium that is strongly unstable against the interchange mode is employed. As the result, it is

obtained that a sufficiently large flow has a potential to suppress the pressure collapse due to the

interchange mode. However, the flow profile is not consistent with the experimental data. Thus,

in the present study, the flow profile is improved and is applied to the same sample equilibrium.

2. Calculation of global flow consistent with experimental data

We have established a numerical scheme to calculate the global flow which is consistent with

the experimental data[5]. In this scheme, we assume that the flow is stationary, the plasma flows

on the magnetic surfaces, and the flow component perpendicular to the magnetic field is given

by the ExB flow. Then, the flow is given by

v= V̂B+ Φ̂′∇ζ ×∇s, (1)

in the Hamada coordinates(s,θ ,ζ ), wheresandζ denote the normalized toroidal magnetic flux

and the toroidal angle, respectively. Each factor in eq. (1) is calculated in the following way. The

magnetic fieldB is obtained from the results of the HINT code calculation. The contravariant
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Figure 1: (a) 3D plots of the stream lines corresponding to the flow observed in LHD experi-

ment. (b) Profiles of the flow components inφ andZ directions normalized by the Alfvén ve-

locity vφ ,exp andvZ,exp, respectively, corresponding to (a), equilibrium pressurePeq, rotational

transformι , and Mercier indexDI . Two types of density profileρ1 andρ2 are also plotted.

(a) (b) (c)

Figure 2: Total pressure profiles with the initial densityρini = ρ1 at t=420τA for the applied

flows of (a) none, (b)vφ ,exp andvZ,exp, and (c)vφ ,exp×200 andvZ,exp×200.

vector∇ζ ×∇s is obtained by means of the surface geometry given by the VMEC code result[6].

The surface quantitieŝV andΦ̂′ are calculated with the use of the experimental data.

In LHD, the Z andφ components of the flow are observed along the horizontal line in the

horizontally elongated cross section, where(R,φ ,Z) are the cylindrical coordinates. Figure 1

(a) shows a result of the flow calculation. Here, we employ the data observed in a shot showing

a pressure collapse. While the flow is observed along a one-dimensional (1D) line in the LHD

experiment, this scheme provides the 3D flow profile in the whole plasma region from the data.

3. Effects of global flow on nonlinear dynamics of interchange mode

The effects of the global flow consistent with the experimental data on the dynamics are

examined in a sample LHD equilibrium. The equilibrium quantities are shown in Fig.1 (b). The
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Figure 3: Time sequence of the poloidal component of the momentum along the horizontal line

in the horizontally elongated cross section for (a)ρini = ρ1 and (b)ρini = ρ2.

surface withι = 1 exists in the plasma column. The Mercier index at the surface isDI = 1.5,

which indicates that the surface is strongly unstable against the interchange mode. The profiles

of the flow components corresponding to Fig.1 (a) are also plotted. In the present study, we

employ two types of the initial densityρini , which are given by

ρ1 = ρ0 (=const.) and ρ2 = ρ0[0.9(1−s2)(1−s3)+0.1]. (2)

At first, ρini = ρ1 is employed. In the no flow case, them= 4/n = 4 interchange mode

linearly grows as is indicated by the value ofDI , and is saturated nonlinearly aroundt = 300τA,

whereτA denotes the Alfvén time. As shown in Fig. 2 (a), a large amount of pressure collapses

in the saturation phase. In the case where the flow corresponding to the experimental data is

applied, the mode grows and is saturated in the way similar to the no flow case as shown in

Fig.2 (b). In the case where the flow that has 200 times larger amplitude of the experimental

data is applied, the pressure collapse is slightly reduced as shown in Fig.2 (c). These results

show that the global flow that has the profile of the experimental data has a potential to stabilize

the interchange mode. In order to investigate how effectively the flow interacts with the mode

growth, we plot the time sequence of the total poloidal momentum. As shown in Fig.3 (a), the

flow decays immediately in the time evolution of the mode. The maximum momentum value is

4.35×10−1 at t = 0.01τA, 1.73×10−2 at t = 120τA, and 7.21×10−3 at t = 320τA. This means

that the initial flow does not sufficiently affect the mode dynamics. This rapid decay of the flow

is attributed to the viscous damping. Sinceρini = ρ1 is employed, the momentum has a sharp

gradient and the damping effect is strong at the plasma edge.

In order to avoid the sharp gradient of the momentum, we employρini = ρ2. As shown in

Fig.4 (a) and (b), in the case where the flow corresponding to the experimental data is applied,
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Figure 4: Total pressure profiles with the initial densityρini = ρ2 at t=330τA for the applied

flows of (a) none, (b)vφ ,exp andvZ,exp, and (c)vφ ,exp×500 andvZ,exp×500.

the pressure collapse similar to that in the no flow case occurs as well. In the case where the flow

that has 500 times larger amplitude of the experimental data is applied, the pressure collapse is

more reduced than that in theρini = ρ1 case as shown in Fig.4 (c). In this case, the maximum

momentum value is 1.52×10−1 at t = 0.01τA, 2.14×10−2 at t = 120τA, and 1.61×10−2 at

t = 330τA, as shown in Fig.3 (b). Note that the initial kinetic energy for Fig.4 (c) is less than

that for Fig.2 (c). Thus, the larger momentum withρini = ρ2 remains in the interaction with the

mode growth compared with the case ofρini = ρ1, however, the survival fraction is still small.

4. Summary

The numerical scheme for the calculation of the global flow consistent with the experimental

data has been established. By utilizing the scheme, we obtain the 3D flow profile in the whole

plasma region from the 1D observed data. The results of the dynamics study of the flow effect

on the interchange mode show that the flow obtained with this scheme has a stabilizing con-

tribution. However, in the constant initial density case, the flow decays rapidly because of the

viscosity before the mode substantially grows. Therefore, the interaction is not considered to be

incorporated appropriately. To avoid the rapid flow decay, the density profile that drops at the

edge is introduced, however the improvement is still limited. Adding a source term correspond-

ing to the viscous decay of the flow to the momentum equation would be useful in future.
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