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A theoretical description is presented of the EC wave–particle interaction in the pre-ionization

phase, much before collisions and other mechanisms can play a role. In the very first phase of

a plasma discharge with EC-assisted breakdown, wave interaction with an electron crossing

the microwave beam in single transit is in general non linear [1]. The electron motion can be

described as that of a single particle in free space under the action of a localized e.m. beam in a

static magnetic field. The EC beam is assumed to be injected into the plasma with a Gaussian-

like profile with wave electric field amplitude E = EM exp(−r2/w2), being r the beam radius, w

the waist and EM its maximum value. For a magnetized electron at room temperature and for EC

beam parameters typical of ITER (P = 1 MW, width w = 0.05−0.1 m, f = 170 GHz) as well as

of present experiments, the interaction regime is characterized by τcycl� τtrap� τ f light� τcoll ,

with τcycl ' 6×10−12 s the cyclotron period, τtrap ≈ 10−8 s the trapping time in the wave field,

τ f light ≈ 1−5×10−6 s the time flight in the beam, and τcoll ≈ 5×10−4−5×10−3 s the collision

time. Being τtrap much shorter than the time scale of the variation of the e.m. wave amplitude,

the above conditions define an adiabatic nonlinear regime (widely investigated in the past, see

e.g. [1–5]), that can be described theoretically via a Hamiltonian formalism, making use of

the motion adiabatic invariants. A rigorous identification of the relevant elementary physical

processes can then be performed within this framework.

The motion of an electron interacting with an EC wave with frequency ω close to a cy-

clotron harmonic nΩ in a static uniform magnetic field B0 = B0ez can be described via a time-

independent Hamiltonian with two degrees of freedom H(z,θ , P̄z, I) = γ−νnI [3, 4], with γ the

relativistic factor. In the regime of interest here, i.e., very low electron temperature and density,

in the weakly relativistic approximation and at first order in the normalized wave amplitude

ε = eE/mcω � 1, the Hamiltonian reads H(z,θ , P̄z, I) = H0(P̄z, I)+H1(z,θ , P̄z, I) with

H0 = 1+ P̄2
z /2+[Ir(P̄z)I− I2/2](1−N2

‖ν
2
n ), H1 = ε(z)Tn(P̄z)(2I)n/2 cosnθ , (1)

where Ir(P̄z) = (1−νn+N‖νnP̄z− P̄2
z /2)/(1−N2

‖ν2
n ) is the resonant action, νn = ν/n = ω/nΩ,

I and θ are action-angle variables, P̄z = Pz +N‖νnI is the parallel canonical momentum conju-

gate to z, and the polarization term reads Tn = Nn−1
⊥ (ex− ey + ezN⊥P̄z)/2 for n = 1,2. For the
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unperturbed system (ε = 0), θ is the phase of the gyromotion, I = p2
⊥/2, and Pz = pz, being p

the normalized kinetic momentum.

Two examples of solution of the Hamiltonian equations of motion are shown in Figure 1 on

the left for ITER parameters, 2nd harmonic extraordinary mode (XM). The initial conditions

correspond to thermal electrons with Te = 0.03 eV, just outside the beam region, i.e., at t = 0,

z0 = −4w (w = 0.1 m), Pz0 = βth and I0 = β 2
th/2 being βth = vth/c = (Te/mc2)1/2 the thermal

velocity normalized to the speed of light, and two different initial phase values θ0. The electron

is non linearly trapped and then untrapped during the EC beam crossing, and either recovers its

initial energy or it gains a large amount of energy when exits the beam region. A small variation

of the parallel canonical momentum is observed in the same conditions. The evolution of the

action is also shown for various input power. The same quite large net action variation is found

independently of the e.m. input power, provided that the power exceeds the trapping threshold

value (≈ 400 kW for this case). Quite similar results are found at first harmonic, with a much

larger energy variation.
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Figure 1: Electron energy mc2(γ−1) versus coordinate z for two different initial phase values θ (left).
The electric field spatial variation is shown in the inset plot on the top right. Other parameters are P = 1
MW, beam width w = 10 cm, second harmonic, X-mode (XM) polarization, N‖ = 0.3, νn = 1. Evolution
of canonical action I normalized to initial value as a function of coordinate z for various input EC power,
P = 0.3,0.5,1,2 MW (right).

The electron motion is characterized by a couple of fast action-angle variables (θ , I) and

of slow canonically conjugate variables (z,Pz), and the action integral J(z,Pz)≡ n/2π
∮

I dθ is

thus an adiabatic invariant of the motion for sufficiently slow e.m. field variation. Breaking of

the invariant at separatrix crossing via trapping/untrapping allows to connect different regions

in phase space and provides the mechanism for net energy variation [1–5]. The initial and final

states are related by ∆γ = νn∆I, and ∆P2
z = ∆γ[∆γ − 2(1/νn− γ0)] due to the constancy of

the Hamiltonian. A net energy variation can occur if H0 is double valued in action I, i.e. if

∂H0/∂ I = 0 is satisfied. A particle with initial I0 and P̄z0 initially on a given branch of the
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Hamiltonian will enter the beam region, cross the separatrix for ε = εs for increasing ε (if

εs ≤ εM), being trapped and then untrapped for decreasing ε at ε = εs, and exit the beam region

with final values I f and P̄z f , with P̄z f ' P̄z0. Note that ∆γ will be equal to zero if the particle at

the last separatrix crossing will belong to the initial Hamiltonian branch.

The evolution of the slow variables is determined by the constancy of the adiabatic invariant

J and of the Hamiltonian, and the ε and Pz values at the separatrix are related to the initial (or

final) momentum values by the system of equations I0, f = |J0, f (εs, P̄zs)|, and H0(I0, f , P̄z0, f ) =

Hs(εs, P̄zs), where J0, f (ε, P̄z) is the action integral in the initial and final stage of the motion and

Hs is the Hamiltonian computed at the separatrix. The total variation of the action variable I

is then equal to the jump of the adiabatic integral at the separatrix ∆I ≡ I f − I0 = J f (εs, P̄zs)−

J0(εs, P̄zs). The separatrix crossings of a very low energy particle with initial action I0 < Ir(P̄z0),

and momentum P̄z0, are given by Jl = I0 for the first crossing, and either Jl = I f or Ju = I f for

the last one, depending on the final branch of the Hamiltonian, lower or upper. In the first case

I f = I0, so the electron recovers its initial energy (∆γ = 0), while in the last case it experiences

a net energy variation

∆γ = νn[Ju(εs, P̄zs)− Jl(εs, P̄zs)] = 2νn[Ir(P̄zs)− I0]. (2)

Note that the nonlinear energy variation (2) depends on the initial conditions only, and that for a

given set of launching parameters the maximum energy gain occurs for particle with the lowest

possible energy. The maximum field amplitude EM value determines under the conditions for

trapping to occur.

A detailed investigation of the above outlined process for the first two harmonics can be

performed in the phase space of the fast variables for fixed ε and P̄z (see e.g. [3,4]). A separatrix

is found only if ε ≤ εcn = βcnI2−n/2
r /Tn, with βc1 = (2/3)3/2 and βc2 = 1/2. For low ε values

the phase space topology for the resonant case is pendulum-like, while it shows quite different

features for ε close to εcn. The adiabatic integrals Jl and Ju on the lower and upper branch of

the separatrix are given in [3], and satisfy the relation Jl + Ju = 2Ir(P̄zs).

Simple analytical estimates for the energy variation can be derived for electrons with very

low initial energy. It is found that P̄zs ' P̄z0 except for the first harmonic oblique propagation

for which the P̄z variation is small but finite. Figure 2 shows a very good agreement between

the analytical estimates and the results obtained by solving the Hamilton equations of motion

for various initial phase values and same initial I0 and Pz0. The energy increases linearly with

the frequency mismatch from the resonance 1− νn, up to a maximum value which depends
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Figure 2: Electron final energy W as a function of the EC frequency ratio for P = 1 MW, w = 10
cm, f = 170 Ghz and quasi XM1 (a), XM2 (b) polarization. Solid curves correspond to the analytical
estimate of the maximum energy, points to the numerical solution of Hamiltonian equations with 50
uniformly distributed θ0 initial values and I0 = β 2

th/2, Pz0 = βth. Note the different scales for the two
harmonics.

on εM, and drops to zero afterwards. Since very low energy particles cross the separatrix for

ε ≈ εcn < εM, the maximum energy W = mc2(γ−1) for increasing 1−νn can be estimated for

εM = εcn as Wmax ' 2mc2[εMTn/(βcn(1−N2
‖ ))]

2/(4−n). For a quasi X-mode (ex = ez = 0) the

maximum energy Wmax scales with the injected EC beam parameters as

Wmax,XM1 ' 15.6P1/3/[ f w(1−N2
‖ )]

2/3, Wmax,XM2 ' 2.1P1/2/[ f w(1−N2
‖ )], (3)

where W , P, f , w are measured in keV, MW, GHz and meters, respectively. The derived simple

analytical estimates for the maximum energy gain as a function of power, frequency and beam

spot size are in good agreement with numerical particle simulations.

In conclusion, the analysis confirms that cold electrons can easily gain energies well above

the ionization energy in most conditions, as observed in many experiments [6, 7].
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