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A theoretical description is presented of the EC wave—particle interaction in the pre-ionization
phase, much before collisions and other mechanisms can play a role. In the very first phase of
a plasma discharge with EC-assisted breakdown, wave interaction with an electron crossing
the microwave beam in single transit is in general non linear [1]. The electron motion can be
described as that of a single particle in free space under the action of a localized e.m. beam in a
static magnetic field. The EC beam is assumed to be injected into the plasma with a Gaussian-
like profile with wave electric field amplitude E = Ej;exp (—r>/w?), being r the beam radius, w
the waist and E) its maximum value. For a magnetized electron at room temperature and for EC
beam parameters typical of ITER (P =1 MW, width w =0.05—0.1 m, f = 170 GHz) as well as
of present experiments, the interaction regime is characterized by T.ye; < Trrap < Triight <K Teolls
with Ty > 6 X 10~'2 s the cyclotron period, T, p R 1078 s the trapping time in the wave field,
Tr1ight ~ 1—5x 107% s the time flight in the beam, and 7.,/ ~5x 107*—5x 1073 s the collision
time. Being 7,4, much shorter than the time scale of the variation of the e.m. wave amplitude,
the above conditions define an adiabatic nonlinear regime (widely investigated in the past, see
e.g. [1-5]), that can be described theoretically via a Hamiltonian formalism, making use of
the motion adiabatic invariants. A rigorous identification of the relevant elementary physical
processes can then be performed within this framework.

The motion of an electron interacting with an EC wave with frequency w close to a cy-
clotron harmonic nQ in a static uniform magnetic field By = Bge, can be described via a time-
independent Hamiltonian with two degrees of freedom H(z, 0, P,,I) = y— v,I [3,4], with 7 the
relativistic factor. In the regime of interest here, i.e., very low electron temperature and density,
in the weakly relativistic approximation and at first order in the normalized wave amplitude

€ = eE /mc® < 1, the Hamiltonian reads H(z, 0, P,,1) = Hy(P,,1) + Hy(z,0,P,,I) with
Hy=1+F 2+ [L(P)I-F/2)(1-Njvy),  Hi=e(x)T,(P) 20)"*cosnB, (1)

where I,(P,) = (1 — v, +Nyv,P.— P?/2) /(1 —NHZV,%) is the resonant action, v, = v/n = @ /n£,
I and O are action-angle variables, P, = P, + N Vul is the parallel canonical momentum conju-

gate to z, and the polarization term reads 7, = N" ' (ex — e, +e,N, P.) /2 for n = 1,2. For the
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unperturbed system (€ = 0), 0 is the phase of the gyromotion, I = pi /2, and P, = p_, being p
the normalized kinetic momentum.

Two examples of solution of the Hamiltonian equations of motion are shown in Figure 1 on
the left for ITER parameters, 274 harmonic extraordinary mode (XM). The initial conditions
correspond to thermal electrons with 7, = 0.03 eV, just outside the beam region, i.e., at t = 0,
70 =—4w (w=0.1 m), P,y = B, and [ = [)’[%1/2 being By, = v /c = (Te/mcz)l/2 the thermal
velocity normalized to the speed of light, and two different initial phase values 6y. The electron
is non linearly trapped and then untrapped during the EC beam crossing, and either recovers its
initial energy or it gains a large amount of energy when exits the beam region. A small variation
of the parallel canonical momentum is observed in the same conditions. The evolution of the
action is also shown for various input power. The same quite large net action variation is found
independently of the e.m. input power, provided that the power exceeds the trapping threshold
value (= 400 kW for this case). Quite similar results are found at first harmonic, with a much

larger energy variation.
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Figure 1: Electron energy mc*(y— 1) versus coordinate z for two different initial phase values 0 (left).
The electric field spatial variation is shown in the inset plot on the top right. Other parameters are P =1
MW, beam width w = 10 cm, second harmonic, X-mode (XM) polarization, NH =0.3, v, = 1. Evolution
of canonical action I normalized to initial value as a function of coordinate z for various input EC power,
P=0.3,0.5,1,2 MW (right).

The electron motion is characterized by a couple of fast action-angle variables (6,7) and
of slow canonically conjugate variables (z, P;), and the action integral J(z,P;) =n/2n §1d0 is
thus an adiabatic invariant of the motion for sufficiently slow e.m. field variation. Breaking of
the invariant at separatrix crossing via trapping/untrapping allows to connect different regions
in phase space and provides the mechanism for net energy variation [1-5]. The initial and final
states are related by Ay = v,Al, and AP? = Ay[Ay —2(1/v, — Y)] due to the constancy of
the Hamiltonian. A net energy variation can occur if Hy is double valued in action [, i.e. if

0Hy/dI = 0 is satisfied. A particle with initial Iy and P, initially on a given branch of the
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Hamiltonian will enter the beam region, cross the separatrix for € = & for increasing € (if
& < &y), being trapped and then untrapped for decreasing € at € = &, and exit the beam region
with final values Iy and P, 7, with Py ~ P,. Note that Ay will be equal to zero if the particle at
the last separatrix crossing will belong to the initial Hamiltonian branch.

The evolution of the slow variables is determined by the constancy of the adiabatic invariant
J and of the Hamiltonian, and the € and P, values at the separatrix are related to the initial (or
final) momentum values by the system of equations Iy r = |Jo ¢ (&, Py)|, and Ho(lo f, P ) =
H; (&, P,s), where Jo_f(&, P;) is the action integral in the initial and final stage of the motion and
H; is the Hamiltonian computed at the separatrix. The total variation of the action variable /
is then equal to the jump of the adiabatic integral at the separatrix Al = Iy — Iy = J(&, Pys) —
Jo(&s, P;s). The separatrix crossings of a very low energy particle with initial action Iy < I,(Py),
and momentum Py, are given by J; = I for the first crossing, and either J; = I or J,, = I for
the last one, depending on the final branch of the Hamiltonian, lower or upper. In the first case
Iy = Iy, so the electron recovers its initial energy (Ay = 0), while in the last case it experiences

a net energy variation
AY = ValJu(&s, Ps) = J1(&, Pry)] = 2V [I(Pys) — Io). (2)

Note that the nonlinear energy variation (2) depends on the initial conditions only, and that for a
given set of launching parameters the maximum energy gain occurs for particle with the lowest
possible energy. The maximum field amplitude Ej; value determines under the conditions for
trapping to occur.

A detailed investigation of the above outlined process for the first two harmonics can be
performed in the phase space of the fast variables for fixed € and P, (see e.g. [3,4]). A separatrix
is found only if € < g, = ﬁcnlrzfn/z/Tn, with B = (2/3)3/2 and B = 1/2. For low € values
the phase space topology for the resonant case is pendulum-like, while it shows quite different
features for € close to €.,. The adiabatic integrals J; and J,, on the lower and upper branch of
the separatrix are given in [3], and satisfy the relation J; +J,, = 2I.(Py).

Simple analytical estimates for the energy variation can be derived for electrons with very
low initial energy. It is found that P ~ P,y except for the first harmonic oblique propagation
for which the P, variation is small but finite. Figure 2 shows a very good agreement between
the analytical estimates and the results obtained by solving the Hamilton equations of motion
for various initial phase values and same initial Iy and P,y. The energy increases linearly with

the frequency mismatch from the resonance 1 — v, up to a maximum value which depends
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Figure 2: Electron final energy W as a function of the EC frequency ratio for P =1 MW, w = 10
cm, f =170 Ghz and quasi XM1 (a), XM2 (b) polarization. Solid curves correspond to the analytical
estimate of the maximum energy, points to the numerical solution of Hamiltonian equations with 50
uniformly distributed 6y initial values and Iy = 37, /2, Py = Pu. Note the different scales for the two
harmonics.

on &y, and drops to zero afterwards. Since very low energy particles cross the separatrix for
£~ £, < &y, the maximum energy W = mc?(y — 1) for increasing 1 — v,, can be estimated for
& = Ecn a8 Wipay ~ 2mc*[ey T/ (Ben(1 —NHZ))]Z/(A'*”). For a quasi X-mode (e, = e, = 0) the

maximum energy W,,,, scales with the injected EC beam parameters as
Winaxxan = 15.6 P13 /[fw(1=NDPP, Woaexar ~ 2.1P2/[fw(1=ND)],  (3)

where W, P, f, w are measured in keV, MW, GHz and meters, respectively. The derived simple
analytical estimates for the maximum energy gain as a function of power, frequency and beam
spot size are in good agreement with numerical particle simulations.

In conclusion, the analysis confirms that cold electrons can easily gain energies well above
the ionization energy in most conditions, as observed in many experiments [6,7].
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ported by the FAE grant FAE-GRT-615. The views and opinions expressed herein do not neces-
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