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Nonlinear gyrokinetic turbulence simulations are increasingly validated by experiments. Yet,

they are too computationally expensive for applications such as offline scenario optimization

and real-time supervision and control. Reduced linear modules provide speedup of up to 7 or-

ders of magnitude, at the cost of reduced complexity of the underlying physical model. For

example, 1s of JET evolution demands ∼2×103 turbulent flux calculations, resulting in ∼10

hour simulation time on 10 cores for a second of plasma evolution for the QuaLiKiz [1, 2]

quasilinear transport code. However, we need even more speedup to reach the real-time regime

of 10−3s per flux calculation. In this study, we propose to use neural networks to emulate Qua-

LiKiz. This final step gives another six orders of magnitude speedup, which bridges the gap to

realtime modelling. We base our work on the successful proof of concept by J. Citrin et al.[3],

in which a multilayer perceptron neural network was able to reproduce QuaLiKiz heat fluxes

as a function of ion temperature gradient, ion-electron temperature ratio, safety factor and mag-

netic shear. In this work, we expand this 4D input space to 7D by adding electron temperature

gradient, density gradient and minor radius. A dataset with these dimensions plus two addi-

tional dimensions, collisionally and Zeffx, has been made. The input space can be extended

further with a new linear quench rule by V. Dagnelie to include rotation as 10th dimension [4].

Heat fluxes and particle diffusion and pinch for both ions and electrons for ITG, ETG and TEM

regime are the outputs contained in the dataset.

Training Method

The first step of Neural Network training is acquiring a training set. We have generated a

9D hyperrectangle of 3 · 108 flux evaluations within experimentally relevant ranges using the

QuaLiKiz code. The ranges can be found in table 1. The dataset is available for visual inspection

online [5]. It was generated using 1.3 MCPh using the Edison supercomputer of the Berkeley

National Energy Research Scientific Computing Center.
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variable # points min max

kθ ρs 18 0.1 36
R

LTi
12 0 14

R
LTe

12 0 14
R
Ln

12 -5 6

qx 10 0.66 15

s 10 -1 5

ε 8 0.03 0.33
Ti
Te

7 0.25 2.5

ν∗ 6 1×10−5 1

Ze f f 5 1 3

Total 3×108 ≈ 1.3MCPUh

Table 1: Input ranges of dataset generated from QuaLiKiz data.

After generation, the dataset need to be filtered before a network is trained. Points where we

feel QuaLiKiz is not yet sufficiently validated, as well as points with a too high flux are filtered

out. Then, the filtered dataset is split in three sets: train, test and validation. The training set is

used to train the weights and biases of the neural network itself, while the validation set is used

to tune the hyper-parameters (for example, learning rate, early stop condition). Finally, the test

set is used to determine the final goodness of the fit.

The neural network training was performed using the TensorFlow framework [6]. TensorFlow

allows one to define a data flow graph, in which nodes are mathematical operations and the

edges are tensors, containing the inputs and outputs for these operations. The data graph is

defined in Python, while the actual operations are performed in a high-performance language,

usually FORTRAN or C. Many operations are also generalized to use the CUDA or OpenCL

framework, allowing code to run on GPUs. This level of abstraction allows for rapid prototyping

and analysis in Python, while still being able to do fast neural network training. As such, we

have set up a Python framework to quickly test different kinds of neural networks and training

strategies.

Our current neural networks use three hidden layers of 30 nodes. Although two layers are

generally sufficient, we found higher convergence rates with three layers. A sigmoid, the tanh,

was used as activation function. The network are trained using the L-BFGS algorithm, using a

loss function that includes the mean square error and the L2-loss. The L2-loss term prevents

overfitting.
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Threshold Mismatch

An important effect we found to be important for physically consistent integrated modelling

during our training is threshold mismatch[7]. When training directly on the ion and electron

heatflux, one generally tries to minimize mean square error. Although this results in fits that

generalize the training set quite well, it does not capture important small features, as it is an av-

erage quantity. A feature that is particularly important is the threshold, which is when turbulent

transport starts having a non-negligible strength. Turbulent transport shows threshold behaviour

in many dimensions, here we focus on the temperature threshold of ITG turbulence. If, for ex-

ample, the threshold for the ions lies higher than for the electrons, the electron temperature will

’run away’, resulting in a higher electron temperature. This artificially changes the system that

is simulated, resulting in a non-physical system. In our work, we try to solve this by fitting on

combined ion and electron fluxes. For example, fits on qi/qe and qi +qe have successfully been

made for total flux and separate ITG, TEM and ETG fluxes. However, more validation has to

be done to determine the best method to remove the threshold mismatch.
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Figure 1: An example of threshold mismatch. One can see the two different styles of neural network fits.

Dots are QuaLiKiz output, and the solid lines represent a fit directly on flux. The dashed line is a fit on

qi/qe and qi+qe. Ions in blue and electrons in yet. Note the exact match of threshold with the dashed lines.

Goodness of Neural Networks

Finding a good metric for comparing neural network performance is hard. The usual practice

of stating the root mean square error as catch-all for neural network performance is not sufficient
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to cover the relevant physics.

Figure 2: Kernel density estimate of residual.

Colours are plotted on a logarithmic axis, and

represent the population density. The x-axis

shows the residual (yreal − yNN), and the y-

axis shows total flux. Here we can clearly see

that most of the population has both a low flux

and a low residual. The distribution of errors

is also non-symmetric, so the RMS error does

not describe the underlying distribution fully.

To get a better view of the performance we instead

propose to use kernel density estimating (KDE).

KDE is a non-parametric way to estimate popula-

tion density, and is generalization of the histogram.

Using a KDE gives a better view of where the error

comes from, and from which part of the population.

Conclusion and Outlook

In this paper we have presented a large-scale

database of 3 ·108 ITG, TEM, ETG heat and particle

fluxes using the QuaLiKiz code. Initial 7D neural

network fits look promising, but a more rigid ap-

proach of validation is needed. We noted that for

out purposes, a simple RMS error is not enough.

In future work, the neural networks will be ex-

tended to 9D. This will be done while keeping phys-

ical constraints in mind. The networks will also be

extended to 10D by using a ExB shear suppression

model. Finally, the trained networks will be vali-

dated in the real-time capable tokamak simulator

suite RAPTOR [7, 8, 9]

References
[1] C. Bourdelle et al. PPCF 58 014036 (2016)

[2] C. Bourdelle et al., this conference (EPS Belfast 2017,

P4.167)

[3] J. Citrin et al. Nucl. Fusion 55 092001 (2015)

[4] V.I. Dagnelie et al., this conference (EPS Belfast 2017,

P5.183)

[5] K.L. van de Plassche http://dataslicer.qualikiz.

com

[6] M. Abadi et al. Tensorflow http://tensorflow.org

[7] J. Citrin et al., this conference (EPS Belfast 2017, P5.160)

[8] F. Felici and O. Sauter, Plasma Physics and Controlled

Fusion 54, 2 (2012)

[9] A. Ho et al., this conference (EPS Belfast 2017, P5.173)

44th EPS Conference on Plasma Physics P2.182


