44*" EPS Conference on Plasma Physics P2.182

Realtime capable quasilinear gyrokinetic modelling using neural networks

K.L. van de Plassche!:2, J. CitrinZ, C. Bourdelle?, V.I. Dagneliez, A. Ho?

U University of Technology Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
2 DIFFER, PO Box 6336, 5600 HH Eindhoven, The Netherlands
3 CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France.

Nonlinear gyrokinetic turbulence simulations are increasingly validated by experiments. Yet,
they are too computationally expensive for applications such as offline scenario optimization
and real-time supervision and control. Reduced linear modules provide speedup of up to 7 or-
ders of magnitude, at the cost of reduced complexity of the underlying physical model. For
example, 1s of JET evolution demands ~2 x 103 turbulent flux calculations, resulting in ~10
hour simulation time on 10 cores for a second of plasma evolution for the QuaLiKiz [1, 2]
quasilinear transport code. However, we need even more speedup to reach the real-time regime
of 10735 per flux calculation. In this study, we propose to use neural networks to emulate Qua-
LiKiz. This final step gives another six orders of magnitude speedup, which bridges the gap to
realtime modelling. We base our work on the successful proof of concept by J. Citrin et al.[3],
in which a multilayer perceptron neural network was able to reproduce QuaLiKiz heat fluxes
as a function of ion temperature gradient, ion-electron temperature ratio, safety factor and mag-
netic shear. In this work, we expand this 4D input space to 7D by adding electron temperature
gradient, density gradient and minor radius. A dataset with these dimensions plus two addi-
tional dimensions, collisionally and Zeffx, has been made. The input space can be extended
further with a new linear quench rule by V. Dagnelie to include rotation as 10th dimension [4].
Heat fluxes and particle diffusion and pinch for both ions and electrons for ITG, ETG and TEM

regime are the outputs contained in the dataset.

Training Method

The first step of Neural Network training is acquiring a training set. We have generated a
9D hyperrectangle of 3 - 10% flux evaluations within experimentally relevant ranges using the
QuaL.iKiz code. The ranges can be found in table 1. The dataset is available for visual inspection
online [5]. It was generated using 1.3 MCPh using the Edison supercomputer of the Berkeley

National Energy Research Scientific Computing Center.



44*" EPS Conference on Plasma Physics P2.182

variable # points min max
ke ps 18 0.1 36
L% 12 0 14
% 12 0 14
= 12 -5 6
Gx 10 0.66 15
s 10 -1 5

8 0.03 0.33

7 7 0.25 2.5
v* 6 1x107° 1
Zotf 5 1 3

Total 3x10% ~ 1.3MCPUh

Table 1: Input ranges of dataset generated from QuaLiKiz data.

After generation, the dataset need to be filtered before a network is trained. Points where we
feel QuaLLiKiz is not yet sufficiently validated, as well as points with a too high flux are filtered
out. Then, the filtered dataset is split in three sets: train, test and validation. The training set is
used to train the weights and biases of the neural network itself, while the validation set is used
to tune the hyper-parameters (for example, learning rate, early stop condition). Finally, the test
set is used to determine the final goodness of the fit.

The neural network training was performed using the TensorFlow framework [6]. TensorFlow
allows one to define a data flow graph, in which nodes are mathematical operations and the
edges are tensors, containing the inputs and outputs for these operations. The data graph is
defined in Python, while the actual operations are performed in a high-performance language,
usually FORTRAN or C. Many operations are also generalized to use the CUDA or OpenCL
framework, allowing code to run on GPUs. This level of abstraction allows for rapid prototyping
and analysis in Python, while still being able to do fast neural network training. As such, we
have set up a Python framework to quickly test different kinds of neural networks and training
strategies.

Our current neural networks use three hidden layers of 30 nodes. Although two layers are
generally sufficient, we found higher convergence rates with three layers. A sigmoid, the tanh,
was used as activation function. The network are trained using the L-BFGS algorithm, using a
loss function that includes the mean square error and the L2-loss. The L2-loss term prevents

overfitting.



44*" EPS Conference on Plasma Physics P2.182

Threshold Mismatch

An important effect we found to be important for physically consistent integrated modelling
during our training is threshold mismatch[7]. When training directly on the ion and electron
heatflux, one generally tries to minimize mean square error. Although this results in fits that
generalize the training set quite well, it does not capture important small features, as it is an av-
erage quantity. A feature that is particularly important is the threshold, which is when turbulent
transport starts having a non-negligible strength. Turbulent transport shows threshold behaviour
in many dimensions, here we focus on the temperature threshold of ITG turbulence. If, for ex-
ample, the threshold for the ions lies higher than for the electrons, the electron temperature will
‘run away’, resulting in a higher electron temperature. This artificially changes the system that
is simulated, resulting in a non-physical system. In our work, we try to solve this by fitting on
combined ion and electron fluxes. For example, fits on 4/q, and ¢; + g, have successfully been
made for total flux and separate ITG, TEM and ETG fluxes. However, more validation has to

be done to determine the best method to remove the threshold mismatch.

qi/qer
i + Qe

10.0;

7.51

g — (i, Qe
=< 5.0 ® (e, 1EM
o> o (qiTEM

2.51

0.0

6 8 10
R/Lte

Figure 1: An example of threshold mismatch. One can see the two different styles of neural network fits.
Dots are QuaLiKiz output, and the solid lines represent a fit directly on flux. The dashed line is a fit on

4i/q. and q; + qe. lons in blue and electrons in yet. Note the exact match of threshold with the dashed lines.

Goodness of Neural Networks
Finding a good metric for comparing neural network performance is hard. The usual practice

of stating the root mean square error as catch-all for neural network performance is not sufficient



44*" EPS Conference on Plasma Physics P2.182

to cover the relevant physics.
To get a better view of the performance we instead
propose to use kernel density estimating (KDE).
KDE is a non-parametric way to estimate popula-

-1.0

tion density, and is generalization of the histogram.

-1.5

Using a KDE gives a better view of where the error

comes from, and from which part of the population.

Conclusion and Outlook

In this paper we have presented a large-scale
database of 3- 108 ITG, TEM, ETG heat and particle
fluxes using the QuaLiKiz code. Initial 7D neural
network fits look promising, but a more rigid ap-
proach of validation is needed. We noted that for

out purposes, a simple RMS error is not enough.

In future work, the neural networks will be ex-
tended to 9D. This will be done while keeping phys-
ical constraints in mind. The networks will also be

extended to 10D by using a ExB shear suppression

model. Finally, the trained networks will be vali- Figure 2: Kernel density estimate of residual.

dated in the real-time capable tokamak simulator Colours are plotted on a logarithmic axis, and

suite RAPTOR [7, 8, 9]

represent the population density. The x-axis

shows the residual (Vyeqi — YNN), and the y-
References

[1] C. Bourdelle et al. PPCF 58 014036 (2016)

[2] C. Bourdelle et al., this conference (EPS Belfast 2017,
P4.167)

[3] J. Citrin et al. Nucl. Fusion 55 092001 (2015)

[4] V.I. Dagnelie et al., this conference (EPS Belfast 2017, not describe the underlying distribution fully.
P5.183)

[5] K.L.vande Plasschehttp://dataslicer.qualikiz.

axis shows total flux. Here we can clearly see
that most of the population has both a low flux
and a low residual. The distribution of errors

is also non-symmetric, so the RMS error does

com

[6] M. Abadi et al. Tensorflow http://tensorflow.org

[7]1 J.Citrin et al., this conference (EPS Belfast 2017, P5.160)

[8] F. Felici and O. Sauter, Plasma Physics and Controlled
Fusion 54, 2 (2012)

[9] A.Ho et al., this conference (EPS Belfast 2017, P5.173)



