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Abstract

The study of the stability of MHD plasma equilibria with stationary flows requires a gener-
alization of the standard 6# approach that is used for static configurations. This extension is
best performed [1] by looking at the functional 67 not as a quadratic form derived from the
linearized MHD equations but as the second order variation of the Hamiltonian functional ¢
[2] that describes the full dynamics of a dissipationless MHD plasma. With this approach the
Hermitian property follows automatically. The second variation of the Hamiltonian determines
the MHD plasma stability and can be computed either in Lagrangian or in Eulerian variables.
If stationary equilibrium flows are present the two procedures follow somewhat different paths.

Here we illustrate these differences and exemplify them in the case of a rotating pinch [3].

The Hamiltonian functional .77, equilibria with flows and time dependent relabelling

In Eulerian variables % = [dx [p|v|?/2+pU(s,p)+|B|>/87], with p(x,t) the density,
v(x,t) the fluid velocity, U = U (s,p) and s(x,) the internal energy and entropy per unit mass
and B(x,¢) the magnetic field. The variables Z = p,v,s, B are noncanonical and their equations
of motion, dZ/dt ={Z,H}; involve noncanonical Poisson brackets [4] whose general form
is {F,G} = [dx(6F/8Z)-J-(8G/6Z) with J an anti-selfadjoint operator. The degeneracy of
the noncanonical brackets gives rise to Casimir invariant functionals C; that satisfy {C;,F} =0
for all functionals . The Casimir invariance implies that the system evolution is restricted to
subdomains (foliations) of the space of the Eulerian variables Z.

The map [5] from the Lagrangian variables q(a,7), 7(a,7) to the Eulerian variables Z: p(x,t) =
po(a)/J(a,1),s(x,1) =s0(a), vi(x,1) =7(a,1)/po(a), B'(x,1)=[dq'(a,1)/da;][Bo;(a){J(a,1)],
all evaluated at a = q ! (x,¢) with J = |dq’/da’|, gives # in Lagrangian variables /#[q, 7t] =
[da[mz /2po+ poU (s0,p0/J) + (9q:i/da*) (q'/da") (BEB, /87J)], together with the canoni-
cal equations of motion 7t; = {m;, H} = —8H/8¢' and ¢' = {¢',H} = 6H /5 ;.

Eulerian equilibria are extrema of the Casimir constrained Hamiltonian § = 7 4 X;C;.
Different choices of this “energy Casimir” functional lead to different equilibria. Explicit ex-

pressions for the Casimirs sufficient to describe general families of equilibria with flows may be
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difficult to obtain, thus this method is generally applied to geometrically symmetric equilibria.
Restricting to Dynamically accessible (DA) variations that are generated by the noncanonical
Poisson brackets [6] bypasses this difficulty while ensuring that kinematical constraints are
satisfied. The first order DA variations are: 0pg, = V- (pg1), 0vaa = Vg3 +5sVga + (V x v) X
g1 +Bx(Vxg4)/p, 0sqga =81-Vs, 6Bga =V x (B x g;) with g1, g2, g3, and g4 arbitrary.
Since Eulerian equilibria with flows are not Lagrangian equilibria we introduce a time de-
pendent relabelling [1] a = 2((b,#), with inverse b = B(a,) and the new dynamical variables
and Hamiltonian II(b,) = Jx(a,t), Q(b,t) = q(a,t) #[Q,I1| = 7 — [ dbII-(V-V,Q), with
V(b,t) =BoB ! =B(A(b,t)) the label velocity, V;, = d/db, and J = det(da’/db/).
Setting V(b,7) = v,(b), where v,(b) corresponds to an Eulerian equilibrium state, relabelling al-
lows us to express in Lagrangian variables stationary equilibria, which in these variables would

be time dependent, as time-independent when referred to moving labels.

Stability: energy Casimir, Dynamical Accessible and Lagrangian

For energy Casimir equilibria a sufficient stability condition follows if §2F is positive def-
inite. For perturbations invariant along z we have §%F[Z,;8Z] = [ dx[a;|6S|? + a2(8Q)* +
a3(8R,)? +ay|SR | |? +as(8y)?] where v is the magnetic flux function and 8S, SR, §Q, S are
linear combinations of 8v, 8B, 8p, ds. Extremizing over all variables except 8 y and back sub-
stituting gives 8%F([Z;8y] = [dx[b1|VSy|> + ba(8w)? +bsley x VOY|?], ey = Vy/|Vy|.
Here the coefficients a; and b; depend on space through the equilibrium.

For a Lagrangian equilibrium in moving labels we expand Q = Q,(b,#) + n(b,7),II =
I,(b,t) + 7y (b,t), with 0 and 7y, relabelled canonical pairs and obtain 82.4,(Z,; 1, ty] =
[dx[|7y — peve- VN[ /pe +1 -V, -1]/2, where the operator U, has no explicit time depen-
dence and §°#4,4[Ze;n] = [dxn -V -1/2 = [dxX[pe(Ve-VVe) - (N -VN) — pe|ve - VN|?]/2 +
82# [Z.m] is identical to the functional obtained by Frieman and Rotenberg [7]. Due to the
arbitrariness of 75, which does not contribute to 82W, , the quadratic term ]ﬂn — PeVe- VN \2
can be put equal to zero and a sufficient condition for stability is §%#4,[Z,;n] > 0 for any 7.

Dynamically accessible stability is assessed by expanding the Hamiltonian in Eulerian vari-
ables to second order using the dynamically accessible constraints to this order: §2Hg,[Z,;g] =
[dx p|8vgs —g1-VV+v-Vg|> + 8°Wi,[g1] . If Svg, were independent and arbitrary we could
use it to nullify the first term. Then setting g; = —n, we would see that dynamically accessible
stability is identical to Lagrangian stability. However in general there is not sufficient freedom

in the generating functions to cancel the positive definite first term (see also [8]).
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Comparison between the three different stability criteria
Because different constraints are imposed, stability conditions take different forms when de-
rived within the Lagrangian, Eulerian (energy-Casimir), or dynamical accessible frameworks.

Different perturbations are associated with the three expressions and can be written as

( ( (

épa =-V-(pn) S Pec 6psa =—V-(pgi1)

OVia :%—?—FV-VT]—T[-VV OVec OVga =X+v-Vg —g;-Vv
0sla =—-1-Vs OSec 0sqa = —8g1-Vs

\6B1,j1 =—-Vx(Bxn) \SBeC k5Bda =—-Vx(Bxg)

where X =2(v-V)g +vx (Vxg)+sVgr+Vgs+ I%B X (V xga).
The Lagrangian perturbations 33, are constrained, while for the energy-Casimir expression the
perturbations P are entirely unconstrained (provided they satisfy the translation symmetry).

The dynamically accessible perturbations are constrained. The following inclusions apply:
Paa C Pra C Pec which implies stab,. = staby, = staby, .

Dynamically accessible stability is the most limited because its perturbations are the most con-
strained, while energy-Casimir stability is the most general, when it exists, because its pertur-

bations are not constrained at all.

Explicit comparison for a rigid rotating isothermal configuration
Consider a rotating plasma equilibrium where all quantities depend only on r : B = B,(r)2
+By(r)§, with By = ¢ -Vy x 2, v=vs(r)¢, p=p(r),s=s(r). The generalized Grad-
Shafranov (GGS) equation for y/(r) involves the poloidal Alfven Mach number .# and reads
2 2 2
rir a0 )
We set in dimensionless units B (r) = B; , By (r) = Bor, and vy (r) = Qr with B;, By, Q constants.

By) =0, .(r) = [4zp(r)vg(r)/Bj(r)]'"/>.

Since the plasma is isothermal p(r) and p(r) are linearly related. Solving GGS for p(r) yields
a one-parameter family of equilibria p(r) = (2/w?)[1 — (1 —w?/2)exp (w?r?/2)], with w =
Qro/cs (W?/2 < 1), ¢ the sound velocity, p(0) = 1, p(7) =0 for # = —(2/w?)In (1 —w?/2).

A uniform B, field does not alter these equilibrium configurations but affects their stability.

Comparison results

In Ref.[3] we performed an analytical comparison of the stability boundaries in the w, b =
B /By plane for translationally invariant perturbations illustrating the different steps in the pro-

cedure including the derivation of the equilibrium from the first variation of the Hamiltonian in
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the three different formulations and the implementation of the time-dependent relabelling.
For the chosen rotating equilibrium, the Lagrangian and the dynamically accessible approaches
lead to equivalent conditions. The constraints obeyed by the dynamically accessible pertur-
bations in the presence of flows lead to a stabilizing term that does not vanish for azimuthally
symmetric perturbations but that does not modify the stability analysis since azimuthally sym-
metric perturbations are found to be stable even within the Lagrangian framework.
The minimization of §2Wj, leads to the study of the positivity of a 3 x 3 matrix (a 4 x 4 matrix
for B, # 0 as 1 is no longer decoupled) function of the equilibrium quantities for |m| = 1 per-
turbations. A necessary and sufficient condition for the positivity of this matrix is provided by
the Sylvester criterion which yields w? < 1/2 for B, = 0 and szg < 1for B, # 0 and w? — 0
and B% /By < 1/3, for w> — 1/27. A partial minimization procedure with respect to Ny (to
N, and 1y for B, # 0) leads to less restrictive conditions: w? <0.62 for B, = 0 and w? < 0.46
choosing, e.g., B,/By = 1. Even lesser restrictive conditions could be found by solving the
Euler-Lagrange equation for 1), obtained via variation of the resulting “reduced” §2Wj, subject
to the constraint of [rdr|rn;,|.

Extremization of the energy-Casimir functional over all variables except 6y leads to suffi-
cient stability bounds on w? that, as in the Lagrangian case, become stricter as B% increases. As
predicted, these bounds are in general more restrictive than those found within the Lagrangian

framework, as shown, e.g., by considering again B% = 1, in which case we find w? < 0.31.

Conclusions and remarks

The methods and the three different approaches to the study of the stability of a magnetized
plasma equilibrium with steady flows described in Ref. [1], tested on an example in Ref. [3] and
recalled above, are of general utility: they apply to all important dissipationless plasma models,

kinetic as well as fluid, and can be extended to extended magnetofluid models [9].
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