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Soft X-ray emission spectra from highly charged heavy ions in plasmas have recently drawn
particular attention in terms of fusion and other applications. For example, tungsten (Z=74)
spectra around 5 nm region have been extensively investigated using several different kinds
of light sources as it will be used as a divertor material in ITER [1, 2, 3, 4]. Soft X-ray spectra
from some of the lanthanide ions have been studied as potential candidates for short-wavelength
light sources for the next-generation semiconductor lithography [5, 6, 7]. Bismuth (Z=83) is a
candidate material for a tabletop light source in the so-called water window range (2.3—4.4
nm) for high-contrast biological microscopy [8]. Therefore, it would be worthwhile to survey Z
dependence of soft X-ray spectra from heavy
ions.
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of an LPP is proportional to the square of the laser wavelength, Nd:YAG LPPs are optically
thicker than CO, LPPs.

In this study, we are developing an experimental database of soft X-ray spectra from a num-
ber of heavy ions including tungsten and lanthanides to clarify Z dependence. Also, we employ
several types of plasmas having different densities to investigate opacity effects. High tempera-
ture and low density MCF plasmas produced in the Large Helical Device (LHD) are exploited
to record spectra in optically thin conditions. For higher opacity cases, we have observed spec-
tra from Nd:YAG and CO, LPPs, the electron density of which are around 10?7 and 102 m—3,
respectively.

In LHD, a small amount (~10'7 atoms) of heavy element is injected as an impurity using a
tracer encapsulated solid pellet (TESPEL) [9] into a stably sustained high temperature hydrogen
plasma. Temporal evolutions of soft X-ray spectra after the pellet injection are recorded with
a 2 m Schwob-Fraenkel grazing incidence spectrometer [10] every 0.1 or 0.2 s. The spectral
resolution is around 0.01 nm with a grating of 600 grooves/mm. The LPPs are produced by a
Q-switched Nd:YAG laser (Continuum Inc.) and an ultra-shortpulse CO;, laser operated at the
wavelengths of 10.6 um and 1.064 um, respectively. The laser beams are focused onto a planar
target of a pure metal placed in a vacuum chamber. The maximum laser power densities at the
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observed in the three types of plasmas are compared in Fig. 2. Two different kinds of LHD
spectra recorded in low (0.25 keV) and high (1.5 keV) temperature conditions are plotted in
Fig. 2 (¢) and (d), respectively. The broadband UTA feature around 7.5 nm in optically thicker
Nd:YAG LPP changes into the feature accompanied with some peaks at 7.36 nm in the CO,
LPP. Finally, fine structure in the UTA is clearly distinguishable in the low temperature LHD
plasma.

These UTA features originate from n=4-4 (An=0) transitions of highly charged ions with
outermost 4d and 4f subshells. The peak positions in Fig. 2 (b) and (c¢) are almost identical, and
agrees well with the previously reported position of the resonance 4d-4f transition of Pd-like
Sm'®* [13]. In contrast, only discrete spectral feature without any UTA is observed in the high
temperature LHD plasma in which higher ion stages having 4s or 4p subshells are dominant
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feature around 6.3 nm originates from n=4—4 transitions, while the rugged feature observed
in the Nd:YAG LPP on the shorter wavelength side would be due to n=4-5 (An=1) transitions.

As shown in Fig. 3, the UTAs of the n=4-5 transitions are observed as a number of separate
peaks because the position of An=1 transition moves to shorter wavelength as the ion charge
increases. In the CO, LPP, the An=1 UTA intensity is relatively weaker in comparison with the
main An=0 UTA. In the Nd:YAG LPPs, populations of n=5 levels are larger, and n=4—4 feature
is easily absorbed by the 4d—4f resonances of lower ion stages (including open 4f ions) in lower
temperature region surrounding the core plasma, due to higher electron density. Consequently,
the intensity of n=4-5 emission is much more pronounced in the Nd:YAG LPPs than in the CO,
LPPs. It should be also noted that broader UTA features in the optically thicker Nd:YAG LPPs
contain contributions from satellite transitions which appear at slightly longer wavelength side
of the resonance transitions.

In summary, we have compared the soft X-ray spectra from highly charged heavy ions ob-
served in the three types of plasmas having different opacities. The comparison clearly demon-
strates that the spectral feature drastically changes due to the differences in the effects of self-
absorption, satellite transition and collisional excitation depending on the opacity and electron
density. Also, we have experimentally identified some of the new lines of lanthanide ions in

LHD.
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