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Introduction

Nonlinear wave particle interaction during chorus wave generation has been recently shown
to be a non-adiabatic process; that is, the wave-particle trapping time in the resonant phase-space
structures, T;,, is typically of the same order as the characteristic nonlinear time scale Tyz, [1, 2].
These results shed new light on the physical processes underlying wave-particle resonance and
nonlinear mode evolution with respect to previous analyses assuming Tyz >> T;. In this work,
we present an analytical study of nonlinear evolution of phase-phase space structures in support
of our earlier numerical simulation results [1, 2].

We adopt a non-perturbative description [3] of the phase-space structures due to the interac-
tion of supra-thermal electrons with the fluctuating fields produced by a quasi-periodic chorus
wave. This allows us to derive the renormalized expression of supra-thermal electron distribu-
tion function in the form of a Dyson-like equation [3], which illuminates the self-consistent
nonlinear evolution of resonance structures in the phase-space. In particular, we demonstrate
that frequency sweeping of chorus fluctuations occurs as consequence of maximization of wave-
particle power transfer; and discuss the consequence of this on the spatiotemporal features of

the fluctuation spectrum.

Propagation of the chorus wave packet
The problem of parallel propagating chorus wave packet interacting with hot electrons can
be approximately cast as
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where we introduced the whistler wave dielectric constant, €,,, and dispersion function, D,,,
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In Egs. (1) and (2), we treated thermal electrons as cold fluid, while supra-thermal (“hot”)

electrons are accounted for via the fluctuating current 6J;, produced in response to whistler wave
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electric field 6E | . Furthermore, @, = 47ne”/m Normalized local growth rate
is the electron plasma frequency, Q = eB/(mc)

is the electron cyclotron frequency, e the pos-
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cell code DAWN [4], we assume anisotropic

Maxwellian supra-thermal electron distribution

e —E W +AUB /W, Figure 1: Normalized linear growth rate due to
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(2717)3/2WH€W%_€ ’ hot electrons as a function of @/ and z(Qo/c).
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where A = wLe/w”e

— 1 is the anisotropy index, n, is hot electron density at the equator, w, and
w | . are, respectively, the corresponding parallel and perpendicular thermal speeds (with respect
to the ambient Earth magnetic field B,), & = v?/2 is the energy per unit mass and y = v /(2B)
is the magnetic moment. For simplicity, we also adopt a non-relativistic formulation. Non-
uniformity is controlled by the dependence of B on the coordinate along the magnetic field line.

Here, we take a model B = B, (1 + £2%), with 5*1/ 2 the non-uniformity scale length.

The elements of the whistler wave packet, which can be written as

OE | = OE ((z,t)exp (i/zk(z')dz’ — ia)kt) , 4)

satisfy the WKB dispersion relation D,,(z,k(z), ;) = 0. Meanwhile, letting 0E | ((z,t) =
|0E | ox(z,t)|expigy(z,1), and introducing I (z,¢) = (dD,,/9k)|SE | o (z,1)|?, the evolution equa-
tion for [ (z,t) is

L A C v R
noting 9,0;D,, = 0, with v, = —(dD,,/dw;)~'9dD,,/Jk the wave packet group velocity. The
evolution equation for ¢ (z,¢) is not needed here. In the linear limit, the normalized local growth
rate Y /Qo is reported in Fig. 1. Here, Qo = eB./(mc), and we used typical parameters @, /Qo =
5.ne/n=6x1073, w, =0.2c,w . =0.53c, and & = 8.62 x 107°QF /.

Dyson equation approach

The width of the linear unstable wave spectrum is determined by whistler wave dispersion
relation and the anisotropic supra-thermal electron distribution function. For fixed anisotropy,
i.e. o = Y (@y,z=0), system non-uniformity (controlled by the scale 5’1/ %) identifies two op-
posite limiting behaviors: (1) weak non-uniformity, where the mode saturates before any signifi-

cant non-linear frequency shift (non-uniformity induced) takes place, similar to uniform plasma
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system; (ii) strong non-uniformity, where par- =
. : . Yko0/0
ticles undergo velocity change depending on p
the initial conditions (wave particle phase) and 4 x 107

diffusive relaxation of particles is expected

-3
[5]. For intermediate values of non-uniformity, 3x10
non-linear wave-particle interaction may be
|
- i -li -6 = -5 -5
strengthened and non-perturbative non-linear 6x 10 10°° L 2x10°3x10
interaction takes place. This transition can be §(c”/%)

understood quantitatively since, due to non- Figure 2: Linear growth rate needed at z =0 for

. . spontaneous chorus emission vs. non-uniformity
uniformity, the power exchange between cho-

rus wave packets and supra-thermal particles is control parameter & (c*/35).
characterized by a profile ~ (1 +A&z?)~2 for strong anisotropy A > 1 (cf. Fig. 1). The convec-
tive amplification of a chorus wave packet while moving through the source region, AEZ>< 1,
can, thus, be estimated by the following Padé approximation
(/4 (EA) vt 2n0
(m2/16+EAVE TR )12 (EA) vy

with vy the group velocity at z = 0. Therefore, weak non-uniformity is identified by

(6)

lnIk

§AV§O’L’1%,L < 1, while §AV§O’L’1%,L > 1 corresponds to strong non-uniformity. Meanwhile, op-
timal conditions for chorus emission are obtained for (16/ nz)Aévgo’C[%,LS 1; i.e., assuming

’WLI ~ @ ~ 30 (With @y, the wave-particle trapping frequency)
(%o/Q0)Z (12/7)(AE*/Q5) P vol /c - @)

We have verified the existence of this threshold condition by hybrid numerical simulations [4]
of spontaneous chorus emission, reported in Fig. 2.

When we allow the supra-thermal particle distribution function to consistently evolve in the

dw
%/)v

Here, (...), = [dv(...) and d/d& is taken at constant € ~ & — uBo(wx/p), which is a non-

presence of a nearly periodic chorus wave packet, we have

mi 81, SE* a%‘/+weim uB 9 fo(o)
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linear constant of motion. Furthermore, fo(®) = (27) ™! [5° ¢!® fy(¢)dt is the Laplace transform

of fo(t) and satisfies the following Dyson-like equation
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which provides the renormalized solution for fy(®) in the presence of a nearly coherent chorus

wave packet [3]. Equation (8) can be cast into the following evolution equation for Y

% = p - eiiwt.UB 0 262 12 5
or n(l)k]lm /oode+kV|—a)k—i(3Yk—i(D) 08 |, | m? (2uB) """ |OE Lo
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v
Equations (5) and (9) form a close system of nonlinear equations that can be adopted in the
analysis of chorus emission, which is ongoing. Here, to illustrate the implications of Eq. (9), we
assume that (x> +-a?) ! (x® +b*) "1 ~ (7 /ab) / (a+b) S (x) for Rea > 0, Reb > 0 and |al, |b| < 1.
In this way, by direct substitution into Eq. (9), we obtain

Py 9 (oot I .
= > k| >
ot? aV||7R k4v||,R (9V||7R

(10)

where v| g = (@ — o) /k is the resonant speed and > = (e/m)(k*/wy)(2uB)'/?|SE | o] is
the wave-particle trapping frequency. This result suggests that the fastest growing mode, max-
imizing wave-particle power exchange, is characterized by non-adiabatic nonlinear dynamics

[1, 2] with frequency sweeping

oy, o w? d o
~ ! — ~ . 11
ot .QO — W (1 —V|‘7R/Vg)2 ’ dl‘VH’R k2|V||7R| tr (b

Despite the drastic simplification in Eq. (10), this result is consistent with the former analysis

by Vomvoridis et al. [6] and Omura et al. [7] (R ~ 1/2); and yields the estimate

8a)k/8t (%
(Otzr Qo — ()8

R=(1—vg/ve)* (12)
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