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Introduction

Nonlinear wave particle interaction during chorus wave generation has been recently shown

to be a non-adiabatic process; that is, the wave-particle trapping time in the resonant phase-space

structures, τtr, is typically of the same order as the characteristic nonlinear time scale τNL [1, 2].

These results shed new light on the physical processes underlying wave-particle resonance and

nonlinear mode evolution with respect to previous analyses assuming τNL ≫ τtr. In this work,

we present an analytical study of nonlinear evolution of phase-phase space structures in support

of our earlier numerical simulation results [1, 2].

We adopt a non-perturbative description [3] of the phase-space structures due to the interac-

tion of supra-thermal electrons with the fluctuating fields produced by a quasi-periodic chorus

wave. This allows us to derive the renormalized expression of supra-thermal electron distribu-

tion function in the form of a Dyson-like equation [3], which illuminates the self-consistent

nonlinear evolution of resonance structures in the phase-space. In particular, we demonstrate

that frequency sweeping of chorus fluctuations occurs as consequence of maximization of wave-

particle power transfer; and discuss the consequence of this on the spatiotemporal features of

the fluctuation spectrum.

Propagation of the chorus wave packet

The problem of parallel propagating chorus wave packet interacting with hot electrons can

be approximately cast as

Dw |δEEE⊥|
2 =−

4πi

ω
δJJJh ·δEEE∗

⊥ , (1)

where we introduced the whistler wave dielectric constant, εw, and dispersion function, Dw,

εw = 1+
ω2

p

ω(Ω−ω)
, Dw = εw −

k2c2

ω2
. (2)

In Eqs. (1) and (2), we treated thermal electrons as cold fluid, while supra-thermal (“hot”)

electrons are accounted for via the fluctuating current δJJJh produced in response to whistler wave
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Figure 1: Normalized linear growth rate due to

hot electrons as a function of ωk/Ω0 and z(Ω0/c).

electric field δEEE⊥. Furthermore, ω2
p = 4πne2/m

is the electron plasma frequency, Ω = eB/(mc)

is the electron cyclotron frequency, e the pos-

itive electron charge and m the electron mass.

Consistent with our earlier numerical inves-

tigations [1, 2] using the hybrid particle-in-

cell code DAWN [4], we assume anisotropic

Maxwellian supra-thermal electron distribution

f0 =
ne

(2π)3/2w‖ew2
⊥e

e
−E /w2

‖e
+AµBe/w2

⊥e , (3)

where A ≡w2
⊥e/w2

‖e
−1 is the anisotropy index, ne is hot electron density at the equator, w‖e and

w⊥e are, respectively, the corresponding parallel and perpendicular thermal speeds (with respect

to the ambient Earth magnetic field Be), E = v2/2 is the energy per unit mass and µ = v2
⊥/(2B)

is the magnetic moment. For simplicity, we also adopt a non-relativistic formulation. Non-

uniformity is controlled by the dependence of B on the coordinate along the magnetic field line.

Here, we take a model B = Be(1+ξ z2), with ξ−1/2 the non-uniformity scale length.

The elements of the whistler wave packet, which can be written as

δEEE⊥ = δEEE⊥0(z, t)exp

(

i

∫ z

k(z′)dz′− iωkt

)

, (4)

satisfy the WKB dispersion relation Dw(z,k(z),ωk) = 0. Meanwhile, letting δEEE⊥0(z, t) =

|δEEE⊥0k(z, t)|expiϕk(z, t), and introducing Ik(z, t)≡ (∂Dw/∂k)|δEEE⊥0k(z, t)|
2, the evolution equa-

tion for Ik(z, t) is
(

∂

∂ t
+ vg

∂

∂ z

)

Ik(z, t) = 2γkIk(z, t) , γk =−
1

∂Dw/∂ωk

Im

(

4πi

ωk

δJJJh ·δEEE∗
⊥

|δEEE⊥0k(z, t)|2

)

, (5)

noting ∂z∂kDw = 0, with vg = −(∂Dw/∂ωk)
−1∂Dw/∂k the wave packet group velocity. The

evolution equation for ϕk(z, t) is not needed here. In the linear limit, the normalized local growth

rate γk/Ω0 is reported in Fig. 1. Here, Ω0 = eBe/(mc), and we used typical parameters ωp/Ω0 =

5, ne/n = 6×10−3, w‖e = 0.2c, w⊥e = 0.53c, and ξ = 8.62×10−5Ω2
0/c2.

Dyson equation approach

The width of the linear unstable wave spectrum is determined by whistler wave dispersion

relation and the anisotropic supra-thermal electron distribution function. For fixed anisotropy,

i.e. γk0 = γk(ωk,z= 0), system non-uniformity (controlled by the scale ξ−1/2) identifies two op-

posite limiting behaviors: (i) weak non-uniformity, where the mode saturates before any signifi-

cant non-linear frequency shift (non-uniformity induced) takes place, similar to uniform plasma
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Figure 2: Linear growth rate needed at z = 0 for

spontaneous chorus emission vs. non-uniformity

control parameter ξ (c2/Ω2
0).

system; (ii) strong non-uniformity, where par-

ticles undergo velocity change depending on

the initial conditions (wave particle phase) and

diffusive relaxation of particles is expected

[5]. For intermediate values of non-uniformity,

non-linear wave-particle interaction may be

strengthened and non-perturbative non-linear

interaction takes place. This transition can be

understood quantitatively since, due to non-

uniformity, the power exchange between cho-

rus wave packets and supra-thermal particles is

characterized by a profile ∼ (1+Aξ z2)−2 for strong anisotropy A ≫ 1 (cf. Fig. 1). The convec-

tive amplification of a chorus wave packet while moving through the source region, Aξ z2<
∼ 1,

can, thus, be estimated by the following Padé approximation

ln Ik ≃
(π/4)(ξ A)1/2vg0τNL

(π2/16+ξ Av2
g0τ2

NL)
1/2

2γk0

(ξ A)1/2vg0

, (6)

with vg0 the group velocity at z = 0. Therefore, weak non-uniformity is identified by

ξ Av2
g0τ2

NL ≪ 1, while ξ Av2
g0τ2

NL ≫ 1 corresponds to strong non-uniformity. Meanwhile, op-

timal conditions for chorus emission are obtained for (16/π2)Aξ v2
g0τ2

NL
<
∼ 1; i.e., assuming

τ−1
NL ∼ ωtr ∼ 3γk0 (with ωtr the wave-particle trapping frequency)

(γk0/Ω0)>∼ (12/π)(Aξ c2/Ω2
0)

1/2|vg0|/c . (7)

We have verified the existence of this threshold condition by hybrid numerical simulations [4]

of spontaneous chorus emission, reported in Fig. 2.

When we allow the supra-thermal particle distribution function to consistently evolve in the

presence of a nearly periodic chorus wave packet, we have

4πi

ωk

δJJJh ·δEEE∗
⊥

|δEEE⊥0k(z, t)|2
= −

ω2
p

nωk

∫ +∞

−∞
e−iωt

〈

µB

Ω+ kv‖−ωk − i(γk − iω)

∂ f̂0(ω)

∂E

∣

∣

∣

∣

C

〉

v

dω .

Here, 〈...〉v =
∫

dvvv(...) and ∂/∂E is taken at constant C ≃ E −µB0(ωk/Ω0), which is a non-

linear constant of motion. Furthermore, f̂0(ω) = (2π)−1
∫ ∞

0 eiωt f0(t)dt is the Laplace transform

of f0(t) and satisfies the following Dyson-like equation

f̂0(ω) =
i

2πω
f0 −

2i

ω

e2

m2
(2µB)1/2

e−2γkt |δEEE⊥0k|
2

×
∂

∂E

∣

∣

∣

∣

C

[

(2µB)1/2 (γk + iω)

(Ω+ kv‖−ωk)2 +(γk + iω)2

∂

∂E

∣

∣

∣

∣

C

f̂0(ω −2iγk)

]

, (8)
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which provides the renormalized solution for f̂0(ω) in the presence of a nearly coherent chorus

wave packet [3]. Equation (8) can be cast into the following evolution equation for γk

∂γk

∂ t
=

ω2
p

nωk

Im

〈

∫ ∞

−∞
dω

e−iωt µB

Ω+ kv‖−ωk − i(3γk − iω)

∂

∂E

∣

∣

∣

∣

C

{

2e2

m2
(2µB)1/2 |δEEE⊥0k|

2

×
∂

∂E

∣

∣

∣

∣

C

[

(2µB)1/2 (γk − iω)

(Ω+ kv‖−ωk)2 +(γk − iω)2

∂

∂E

∣

∣

∣

∣

C

f̂0(ω)

]}〉

v

. (9)

Equations (5) and (9) form a close system of nonlinear equations that can be adopted in the

analysis of chorus emission, which is ongoing. Here, to illustrate the implications of Eq. (9), we

assume that (x2+a2)−1(x2+b2)−1 ≃ (π/ab)/(a+b)δ (x) for Rea> 0, Reb> 0 and |a|, |b|≪ 1.

In this way, by direct substitution into Eq. (9), we obtain

∂ 2γk

∂ t2
≃

∂

∂v‖,R

(

ω2
k ω4

tr

k4v2
‖,R

∂

∂v‖,R
γk

)

, (10)

where v‖,R = (ωk −Ω0)/k is the resonant speed and ω2
tr = (e/m)(k2/ωk)(2µB)1/2|δEEE⊥0k| is

the wave-particle trapping frequency. This result suggests that the fastest growing mode, max-

imizing wave-particle power exchange, is characterized by non-adiabatic nonlinear dynamics

[1, 2] with frequency sweeping

∂ωk

∂ t
≃

ωk

Ω0−ωk

ω2
tr

(1− v‖,R/vg)2
, ⇐

d

dt
v‖,R ≃

ωk

k2|v‖,R|
ω2

tr . (11)

Despite the drastic simplification in Eq. (10), this result is consistent with the former analysis

by Vomvoridis et al. [6] and Omura et al. [7] (R ≃ 1/2); and yields the estimate

R ≡ (1− v‖,R/vg)
2 ∂ωk/∂ t

ω2
tr

≃
ωk

Ω0 −ωk

. (12)

References

[1] X. Tao, L. Chen and F. Zonca, Some theoretical and numerical studies of chorus generation. Presented at the

AGU Fall Meeting, San Francisco, California, December 14-18 (2015).

[2] X. Tao, F. Zonca and L. Chen, Identify the nonlinear wave-particle interaction regime during chorus wave

generation, Geophys. Res. Lett. 44, doi:10.1002/2017GL072624 (2017). Also presented at the 58th Annual

Meeting of the APS Division of Plasma Physics - San Jose, California, October 31st - November 4th (2016),

Bull. Am. Phys. Soc. 61, No. 18 (2016).

[3] L. Chen and F. Zonca, Rev. Mod. Phys. 88, 015008 (2016).

[4] X. Tao, J. Geophys. Res. Space Physics 119, 3362 (2014).

[5] J. M. Albert, Phys. Fluids 5, 2744 (1993).

[6] J. L. Vomvoridis, T. L. Crystal, and J. Denavit, J. Geophys. Res. 87, 1473 (1982).

[7] Y. Omura, Y. Katoh, and D. Summers, J. Geophys. Res. 113, A04223 (2008).

44th EPS Conference on Plasma Physics P2.412


