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ABSTRACT: Divertors are a regular feature of the modern day large tokamaks. Divertors are
required for handling the plasma particle and heat exhausts on the walls in fusion plasmas. The
single-null divertor can have two distinct magnetic topologies: open unbounded topology and
closed compact topology. The simple map [1] generically represents open unbounded
topology; and the symmetric quartic map [2] generically represents the closed compact
topology. The new approach for calculation of homoclinic tangles of separatrices in
Hamiltonian systems [3] is used. The homoclinic tangles of the primary separatrix of the single-
null divertor tokamaks with the two distinct topologies are calculated and compared and
contrasted.

In divertor tokamaks, open and unbounded topology is generically represented by the
simple map [1] and the closed and compact topology is generically represented by the
symmetric quartic map [2,10]. This study then will yield the generic features of the effect of
topology on the homoclinic tangle of the ideal separatrix and the footprint from magnetic
asymmetries. The trajectories of magnetic field lines are a 1% degree of freedom Hamiltonian
system where the toroidal angle ¢ plays the role of canonical time. There are three sets of
canonical coordinates that can be deployed to calculate the trajectories of field lines. These are
the magnetic or Boozer coordinates, the natural canonical coordinates (NCC), and the physical
canonical coordinates [4]. In this study, the NCC is used because they are most suitable to
represent doubly periodic magnetic asymmetries in tokamaks and they can be readily
transformed to physical space [4]. Poloidal magnetic flux is the Hamiltonian for the trajectories
of magnetic field lines.

The total Hamiltonian can be as y, (W[,e,(o):g?p( .0)+ v, (v,,0,p) where the

equilibrium poloidal flux, 1/_)p is the unperturbed Hamiltonian and 1/~)p is the magnetic
perturbation. The area-preserving or symplectic map equations for the trajectory of the i field
line is given by

wU =y ko v, (%(1&1), o), (P,-(j)) 106", 0U =Y ko v, (l//({f“), v, %(j)) /oyl
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and got(j”) =got(j) + k. The equilibrium generating function for the simple map is given

v, (W[,9)= v, —%sin%@)y/f . The map equations are then given by
l//11+1 = l//n + kal?p( t’e)/aen 9n+l = Hn + kalr/7p( t’e)/al//iﬁ—l 4 and ¢n+l = q)n +k . The map

parameter £ can be used to represent effects of perturbations as in the standard map [5,6].

Magnetic asymmetries can also be explicitly represented by

v, (v,.0,9)= Z(m’n)é'mn (7, )cos(m@ —np+4¢, ) where (m,n) are the poloidal and toroidal

mode numbers of the perturbation and the ¢

. are the phases. The objective of this work is to
study the generic effects of two distinct types of magnetic topologies for single-null divertor
tokamak. An important issue is to determine whether to represent the magnetic asymmetries
by the map parameter & or explicitly as the above equation. It is important here to dwell on this
issue. Representation of the asymmetries through k has definite advantages. It is completely
generic and is independent of the structure and type of the asymmetries. At the heart of this
issue is estimating the size of magnetic asymmetries corresponding to a given value of k. One
path to resolving this is to calculate the width w of the stochastic layer in the neighborhood of
the X-point as a function of the map parameter k. For small enough perturbation, the width of
the stochastic layer scales as the ' in tokamaks [7]. This scaling can possibly be used to
derive a scaling of J with k. However, this could be an arduous, time-consuming, and
computationally intensive task, and must be done for each map separately.

For calculation of the homoclinic tangles, a recently developed method by Punjabi and
Boozer for the DIII-D tokamak [8,9,10] is used. This new approach is based on two topological
invariants: the symplectic invariant and the preservation of the neighborhood. When the
separatrix manifold is mapped forward and backward a single toroidal circuit, these manifolds
meet in thep=mod(g,7)=0 plane, and form homoclinic tangle. Figure 1(a-b) depicts ideal
separatrix of the SM. Fig. 2(a-f) depict the homoclinic tangles of the SM and SQM for various
values of k after a single toroidal circuit in the ¢-plane. These figures show that for SM, the
principal lobe near the X-point is prominently elongated in radial direction as k increases ;
while the principal lobe near the X-point for the SQM moves in the poloidal direction. It is
reasonable to infer these difference is due to difference in topology. We plan to study this issue
in depth in future. This work is supported by grants DE-FG02-01ER54624, DE-FG02-
04ER54793. This research used resources of the NERSC, supported by the Office of Science,
US DOE, under Contract No. DE-AC02-05CH11231.
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Fig.2(a-f): Homoclinic tangles of the SM separatrix for A=21/360, /=271/180 and

k=2m/90 after a single toroidal circuit in the ¢=0 plane.
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Fig.3(a-f): Homoclinic tangles of the SQM separatrix for A=21/360, k=27/180 and
k=2m/18 after a single toroidal circuit in the ¢=0 plane.
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