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ABSTRACT: Divertors are a regular feature of the modern day large tokamaks. Divertors are 

required for handling the plasma particle and heat exhausts on the walls in fusion plasmas. The 

single-null divertor can have two distinct magnetic topologies: open unbounded topology and 

closed compact topology. The simple map [1] generically represents open unbounded 

topology; and the symmetric quartic map [2] generically represents the closed compact 

topology. The new approach for calculation of homoclinic tangles of separatrices in 

Hamiltonian systems [3] is used. The homoclinic tangles of the primary separatrix of the single-

null divertor tokamaks with the two distinct topologies are calculated and compared and 

contrasted.  

In divertor tokamaks, open and unbounded topology is generically represented by the 

simple map [1] and the closed and compact topology is generically represented by the 

symmetric quartic map [2,10]. This study then will yield the generic features of the effect of 

topology on the homoclinic tangle of the ideal separatrix and the footprint from magnetic 

asymmetries. The trajectories of magnetic field lines are a 1½ degree of freedom Hamiltonian 

system where the toroidal angle φ plays the role of canonical time. There are three sets of 

canonical coordinates that can be deployed to calculate the trajectories of field lines. These are 

the magnetic or Boozer coordinates, the natural canonical coordinates (NCC), and the physical 

canonical coordinates [4]. In this study, the NCC is used because they are most suitable to 

represent doubly periodic magnetic asymmetries in tokamaks and they can be readily 

transformed to physical space [4]. Poloidal magnetic flux is the Hamiltonian for the trajectories 

of magnetic field lines.  

The total Hamiltonian can be as       ,,~,,, tptptp   where the 

equilibrium poloidal flux, 𝜓ത௣ is the unperturbed Hamiltonian and 𝜓෨௣ is the magnetic 

perturbation. The area-preserving or symplectic map equations for the trajectory of the ith field 

line is given by  
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,  . The equilibrium generating function for the simple map is given 

    2/33
3

22 sin, tttp   . The map equations are then given by 

  ntpnn k   /,1    11 /,   ntpnn k  , and knn   1 . The map 

parameter k can be used to represent effects of perturbations as in the standard map [5,6]. 

Magnetic asymmetries can also be explicitly represented by 

      mnnm tmntp nm   cos,,~
,

 where (m,n) are the poloidal and toroidal 

mode numbers of the perturbation and the mn  are the phases. The objective of this work is to 

study the generic effects of two distinct types of magnetic topologies for single-null divertor 

tokamak. An important issue is to determine whether to represent the magnetic asymmetries 

by the map parameter k or explicitly as the above equation. It is important here to dwell on this 

issue. Representation of the asymmetries through k has definite advantages. It is completely 

generic and is independent of the structure and type of the asymmetries. At the heart of this 

issue is estimating the size of magnetic asymmetries corresponding to a given value of k. One 

path to resolving this is to calculate the width w of the stochastic layer in the neighborhood of 

the X-point as a function of the map parameter k.  For small enough perturbation, the width of 

the stochastic layer scales as the δ1/2 in tokamaks [7]. This scaling can possibly be used to 

derive a scaling of δ with k. However, this could be an arduous, time-consuming, and 

computationally intensive task, and must be done for each map separately. 

For calculation of the homoclinic tangles, a recently developed method by Punjabi and 

Boozer for the DIII-D tokamak [8,9,10] is used. This new approach is based on two topological 

invariants: the symplectic invariant and the preservation of the neighborhood. When the 

separatrix manifold is mapped forward and backward a single toroidal circuit, these manifolds 

meet in the=mod(,)=0 plane, and form homoclinic tangle. Figure 1(a-b) depicts ideal 

separatrix of the SM. Fig. 2(a-f) depict the homoclinic tangles of the SM and SQM for various 

values of k after a single toroidal circuit in the -plane. These figures show that for SM, the 

principal lobe near the X-point is prominently elongated in radial direction as k increases ; 

while the principal lobe near the X-point for the SQM moves in the poloidal direction. It is 

reasonable to infer these difference is due to difference in topology. We plan to study this issue 

in depth in future. This work is supported by grants DE-FG02-01ER54624, DE-FG02-

04ER54793. This research used resources of the NERSC, supported by the Office of Science, 

US DOE, under Contract No. DE-AC02-05CH11231. 
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                  Fig.(a-b): Ideal separatrices for the SM and SQM. 
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              Fig.2(a-f): Homoclinic tangles of the SM separatrix for k=2/360, k=2/180 and   
              k=2/90 after a single toroidal circuit in the =0 plane. 
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               Fig.3(a-f): Homoclinic tangles of the SQM separatrix for k=2/360, k=2/180 and                 
               k=2/18 after a single toroidal circuit in the =0 plane. 
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