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Introduction

For generating fusion power, high plasma density is indispensable for ITER and subsequent

reactor tokamaks but it may lead to the density limit disruption (DLD). The physical mech-

anisms behind the underlying processes of DLD are only partially understood. The growing

MHD instabilities, usually dominated by rotating magnetic islands of helicity (m,n) = (2,1),

are often regarded as precursors to DLD where m and n are poloidal and toroidal mode num-

bers respectively. At some stage of the development of this mode, the energy confinement is

abruptly destroyed which is termed as thermal quench (TQ) phase of the disruption. This is

usually attributed to stochastization of the field lines, due to overlapping of magnetic islands,

leading to enhanced transport in the radial direction. Contrary to this hypothesis, a secondary

instability (SI) to the rotating (2,1) magnetic island was observed prior to the TQ, when the

amplitude of the magnetic island is large and its rotation frequency is low, first in JET [1] and

then in COMPASS [2].

The SI is characterized by small amplitude perturbations, with no m or n mode numbers,

superimposed on the perturbations of the precursor magnetic island. The frequency of the SI is

higher than the rotating frequency of the island itself and is also clearly observed in dBp/dt

(rate of change of poloidal magnetic field) signal. As the TQ approaches, the evolution of

the magnetic island perturbation dB̃p/dt becomes anharmonic, while the frequency of the SI

perturbations increase, displaying a broader spectrum. In Fig. 1, this transition is illustrated

and marked at tT R . The present work will focus on the study of the SI behaviour in the period

∆tSI = tCQ − tT R , where tCQ is the time of the minimum in Vloop, the outset time for the current

quench (CQ) phase of the disruption. During this period, as the amplitude and frequency of the

SI increase, a degradation of the energy confinement is observed that culminates abruptly in the
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TQ-phase of the disruption. Therefore, SI can be considered as a possible cause of TQ.

Experimental Results

In this work, a set of Ohmic (L-mode) diverted plasmas with fixed q95 ∼ 4 is analysed.

The plasma current Ip was scanned in the range of 130 kA < Ip < 230 kA, corresponding to

a toroidal magnetic field of 0.92 T ≤ Bφ ≤ 1.38 T in order to keep q95 constant. The electron

density ne was ramped up in Deuterium (D2) plasmas by gas puffing until the DLD is triggered.

The maximum ne achieved, in these cases, was typically 50% of the Greenwald limit. The impu-

rity content of the plasma was also changed with Ne-puffing in some discharges. The maximum

density attained with Ne-puff was almost half of the density attained with D2-puff.

The perturbations of the magnetic island and of the SI were followed both with 3 arrays of

24 Mirnov coils in different toroidal positions, sensitive to Bp, and a set of 4 saddle loop coils

displaced in four quadrants (NW, SE, SW and NE) located outside of the vacuum vessel [3], in

the low field side (LFS). The saddle loops are particularly sensitive to the radial magnetic field

Br. The n = 1 component of the perturbed radial magnetic field, B̃r_n=1 was estimated as:

B̃r_n=1 =

√(
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r −BSE
r

2

)2

+

(
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r

2

)2
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In all the discharges, the (2,1) island starts rotating at ∼ 15 kHz and slows down as its am-

plitude increases. In the majority (∼ 85%) of COMPASS DLDs attained with D2-puff, when

the TQ occurs, the island is still rotating at ≈ 5 kHz (see Fig.1). For simplicity, these cases will

be called rotating modes henceforward. However, around tT R , the island rotation reaches a min-

imum and increases afterwards (see Fig.1(c)). Although B̃p keeps increasing, B̃r_n=1 saturates

at ≈ 0.5 mT (see Fig.1 (g) and (h)) until it displays an explosive growth at the TQ. In the re-

maining D2-puff DLDs, the island is quasi-locked to the wall rotating at < 2 kHz when the TQ

occurs (see Fig.1). For these cases, ∆tSI is very short ≈ 0.2 ms and it is not so clear to assess

if the mode rotation reaches also a minimum at tT R (see Fig. 1 and Fig. 2) followed by B̃r_n=1

saturation.

Regarding the rotating modes, ∆tSI displayed a larger variability, 0.4 ms.∆tSI . 0.9 ms when

Ip was scanned keeping q95 ≈ 4 (see Fig. 2). So, the duration of the high frequency phase of the

SI for quasi-locked modes can be up to 4 times shorter than for rotating modes. This means that

in COMPASS DLDs, energy confinement is destroyed faster with quasi-locked modes. Com-

paring the value of B̃r with the rotation frequency of the magnetic island at tT R , the transition

time when the spectrum of the SI perturbations broadens, it is observed that B̃r decreases as the

rotation frequency increases (see circular data points in Fig. 2(c)). Concerning the island, this
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Figure 1: Left, DLD preceded by a rotating (2,1) mode (a) Ip and Vloop, (b) dB̃p/dt and B̃p,

(c) spectrogram of dB̃p/dt (d) B̃r_n=1 (e) envelop of B̃r_n=1. Right, same signals for a DLD

preceded by a quasi-locked mode.

behaviour is expected since a large value of B̃r (larger island) leads to a stronger interaction

with the wall and consequent lower rotation frequency. However, regarding the SI, it is not clear

why for some plasmas the transition time tT R occurs at lower values of B̃r (higher island rotation

frequency) and for other plasmas, the opposite is observed. Putting it in other words, in plasmas

with a quasi-locked mode, why did the secondary instability not develop when the magnetic

island was rotating at ≈ 5 kHz?

On the other hand, this indicates that the TQ can be triggered at different distinct values

of B̃r. As Fig. 2(d) shows, changes in the distance ∆r between the q = 2 rational surface and

the position of the coils are small. This indicates that, from the analysis of DLDs preceded by

rotating modes and by quasi-locked modes, the TQ does not occur at a particular island width.

Rather, it is initiated when the frequency of the SI increases and broadens its spectrum at tT R . If

this study was focused only on quasi-locked modes, it would seem that TQ was triggered at a

certain value of B̃r, i.e., at a certain value of the island width [4].

For the DLDs attained with Ne-puff (see triangular data points in Fig. 2(b)), it was observed

that ∆tSI was in the short range of values of the quasi-locked modes attained with D2-puff. It is

expected that the presence of Ne contributes to the increase of Zeff and radiation losses, leading

to a faster growth of the (2,1) mode [5]. However, again, DLDs preceded by rotating or quasi-

locked modes occur at distinct values of B̃r as shown by the triangular data points in Fig. 2(c).
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Figure 2: (a) (2,1) mode perturbation B̃r vs Ip, (b) Ip vs ∆tSI , (c) B̃r vs fmode, frequency of the

(2,1) mode, (d) B̃r vs ∆r. Except ∆tSI , all other indicated parameters are measured at tT R .

Conclusions

It was observed in COMPASS DLDs that the period ∆tSI , when the frequency of the SI per-

turbations increase displaying a broader spectrum, is independent of the plasma current Ip at

constant q95. In DLDs preceded by quasi-locked modes, ∆tSI was up to 4 times shorter than for

DLDs preceded by rotating modes. At the outset of ∆tSI , distinct values of B̃r are measured. For

the conditions of these experiments, this seems to correspond to different values of the (2,1)

island width implying that the island size is not the only factor to influence the development of

the secondary instability and the thermal quench phase of the disruption.
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