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Introduction

For long-pulse scenarios in large tokamaks, supervisiom@fplasma discharge evolution
is increasingly important and requires efficient actuatanagement (AM) [1]. Because of its
flexibility, electron cyclotron resonance heating/cutrénve (ECRH/ECCD) is a good candi-
date for AM [2]. Among the several physics phenomena andnpeters that can be controlled
by ECRH/ECCD, neoclassical tearing modes (NTMs) can degradgenplaonfinement and
lead to disruptions [3], causing a major concern for ITER; aodtrol of plasma profiles is
required to achieve advanced tokamak operations in ITER@&#nde reactors [1]. With a pre-
liminary design of the AM module, real-time integrated aohbf NTMs, beta (the ratio of
plasma pressure to magnetic pressure) and model-estiseafety factor (q) profiles has been
tested experimentally in TCV for the first time.

Much effort has also been devoted to the understanding of hiysics to achieve better
control. In [4, 5] it was shown that more central co-ECCD (iwgrent driven in the same direc-
tion as the plasma curreht) power is favorable to triggering NTMs. Recent NTM experingen
with central co-ECCD show that a decrease of density (reguitiran increase in the driven
currentlcp), counter-intuitively, makes it harder to trigger the medehere appears to be a
specific density range within which NTMs can be destabiliZgds may arguably be related to
the modification of global g profiles and thus the stabilityle# conventional tearing mode.

Integrated control of NTMs, beta values and model-estimated grofiles

The integrated control experiments used the digital cosyrstem of TCV and two clusters
of second harmonic X-mode (X2) EC actuators: clusteP4 (vhich supplies one EC launcher
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(L1) and cluster B Bs) which consists of two launchers (L4 and L6). L1 was set torbe i
counter-ECCD while L4 and L6 were used in co-ECCD.

The control scheme used follows the control architectuop@sed in [6] and [7], as shown
in Fig. 1. The central decision layer sets control priositteNTM control takes the highest
priority once a mode is detected, but with the additionalsti@nt thatP, is always reserved
for beta and g-profile control. Following the prioritiesethigh-level AM layer allocates the
three EC actuators to different control tasks in real-tithe; basic controller layer contains a
NTM controller and a multivariable controller (hereinafteferred to as profile controller) that
controls beta and q profiles simultaneously. The profilerotlet was designed by an adaptive
control method [8] and the controller test environment isadided in [9]. The low-level AM
layer for now simply combines actuator inputs from the NTM gmofile controller and those
from feedforward requests and can be extended in the futitinetle scheme proposed in [7].

The results of two integrated control tests are S

shown in Figs. 2 and 3, where in both cagesvas Central decision layer

(Determine control priorities
based on requests + constraints)

kept constant at 110 kA. Note that due to the apt
sence of internal current density measurements| i

TCV, the g profiles used in these tests are estin
tions provided by RAPTOR [10]. In the first expert Auocate
iment (#54857), EC power was switched on at 0.5

Required EC powers

following the feedforward power traces and depo-

Outputs fromjcontrollers

sition location (at the plasma center, as shown [ip Low level actuator management layer

> (Ensure EC power deposition)

the fourth panel). The real-time integrated contrp
Plasma stat
started at 0.7s and both beta and g-profile referen res i,:sma g Actuator Inputs

reconstruction

(the second and third panels) were followed very
well. A 2/1 NTM was triggered at about 0.85s and easurements L Tcvplant |

areal-time NTM trigger [11] was sent to the centr&igure 1.The control scheme used in the inte-
grated control experiments

decision layer which gave priority to NTM control
With full access td3s, the NTM controller first requests one launcher (L6) to maweards the
mode location (q=2 surface) with its maximum power (500kWj¢c® the mode stays longer
than a given time, as shown in the fourth panel, a second leur(€4) is moved to the mode
location as well; losing control of all the co-ECCD power (Fg), the profile controller cannot
follow the g-profile requests. NTM was fully stabilized witlvo launchers at about 1.41s, but
then we losBs due to technical issues and beta requests could not beesdtisfi

#56701 (Fig. 3) is a complementary test to #54857 and follavesmilar control scheme,
except that a further upgrade on AM was doiig is reduced to its minimum during the move-
ment of the launcher mirrors to minimize the perturbatioxesed on the profile controller. A
2/1 NTM was triggered at about 0.81s, then L6 moved and fudlpitzed the mode. As shown
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by the green and red curves in the first pafglyas reduced to 200kW during the varying of
beam deposition locations. A second 2/1 NTM was triggereabatit 1.67s and two launchers
were moved to mode location one by one, but not enough timdeftsr full stabilization.
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Figure 2:First integrated NTM and profile controlrijgyre 3:Integrated control test with upgraded AM
testin TCV module

Density effects on the destabilization of NTMs

In the NTM destabilization experiments, 1 MW of
co-ECCD power was deposited at the plasma centekto |

trigger the modes essentially through a global chan%g
of the q profiles. With a density level well below th .
cut-off density of X2 waves (41.0°m~3) and high EC
absorption rate, it is found that NTMs can only be trigf_;» “1
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low density will hinder the triggering. Fig. 4 SUMMa¢iqre 4:Possibility of NTM destabiliza-
rizes 50 stationary instances taken from 33 TCV te$ts under different density levels

and shows the possibility of triggering NTMs under differdansity levels, where all the cases
have similar plasma shape and position. It shows that NTMshbzatriggered with a line-
averaged densityng)) ranging from 145. 10°m~3 to 2.05- 10°m~2 while no NTM triggering
has been found withg below 145- 10°m~3 or above 205- 10°m3 so far.

To interpret this phenomenon, three different density €ase analyzed - #56122 withng
of 2.55-10°m 3, #56124 of 184- 10°m~2 and #54653 of %#0- 10°m~3. Both ray tracing
and stationary current balance calculations show lhats respectively 40, 45 and 60kA in
#56122, #56124 and #54653, but NTM was only triggered in tbderate density andp case
(#56124). This seems to contradict earlier findings thahéigo-ECCD power and lowep
(thus higheilcp/1p) are favorable for NTM triggering [5].

A possible explanation is that the classical tearing tefi, driven by the unstable g pro-
files, in the Modified Rutherford Equation (MRE) [3] is diffetaimder different density levels
and can be positive in specific cases, which will cause thetrof a conventional tearing
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mode, thus providing seed islands and leading to the growitiTdls [4, 12]. Note that co-
ECCD was deposited in the center (far away from q=2 surfaceigger the mode and we have
tested that we are unable to trigger NTMs with local CD near, ga2he mode should result

#56124 at 2.2s, neIm: 1.84
#54653 at 0.7s, nel19:1,40

from the global change of q profile and thas The g 1: a profiles | [—#e6T22at1.25, nel 7255
profiles (computed by ASTRA [13]) of the three cases are

compared, as shown in Fig. 5. The radial locations of trZ],e
g=2 surface are indicated by the vertical lines and the o

cal g gradients (i.edg/dp) are also listed. Different cases, '377'9 |
s\
have different q profiles, which in specific cases may IeaF B,
to a positiveA’ and provide large enough seed islands fg ‘ N
0 0.2 0.4 0.6 0.8 1

NTMs. Note that the central g values are smaller than 1, . _
o Figure 5:The comparison of q profiles

which indicates the occurrence of sawteeth (ST), but thgjer different density levels

high g values near the edge and soft X-ray measurementateditat these ST are small. Ac-

tually [14] shows that only under delicate settings can Sislees be large enough to trigger

NTMs in the L-mode scenarios of TCV.

Summary

Preliminary integrated control of NTMs, beta and modeiraated q profiles has been demon-
strated experimentally in TCV for the first time. An upgradéraf supervision layer is foreseen.
Dedicated NTM tests show that density affects the triggeofiNTMs through global q profile
modifications with central co-ECCD - too low or too high densityt hinder the triggering.
More detailed simulations are ongoing to further clarifggh effects.
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