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The solar wind is usually considered a collisionless plasimae collisions are considered far
too weak to produce any significant effect on the plasma dyesfh]. However, the estimation
of the plasma collisionality is usually based on the resugcconsideration that particle velocity
distribution function (VDF) is close to the thermodynantiequilibrium [2]. On the other hand,
in situ spacecraft measurements [3] and kinetic numerical sinonls{4] show the presence of
significant non-Maxwellian signatures in the three-dimenal VDFs (temperature anisotropies
and non-gyrotropies, particle beams, ring-like modutatiaeformed “potato”-like shapes etc.).
However, since collisional effects are correlated withvélecity gradients in the VDF [5, 6, 7,
8], the collisionless hypothesis may locally fail.

The presence of these out-of-equilibrium fine structuregelocity space is intrinsically due
to the free-streaming term of the Vlasov equation, whicluradly produces smaller and smaller
scales in the presence of an initial perturbation. Furtleeesnnonlinear wave-particle interac-
tions and kinetic turbulence can also produce strongectsires in velocity space. Within the
collisionless assumption, the free energy contained irotheof-equilibrium structures can be
converted into other form of ordered energy (for exampletedenagnetic energy through ki-
netic micro-instabilities). On the other hand, collisibeifects - which in general tend to oppose
to the formation of out-of-equilibrium velocity structwand restore the thermal equilibrium -
can dissipate these structures, thus irreversibly deggatttie information contained into such
structures and, ultimately, heating the plasma. Henceyitbasg the effect of collisions on small
scale structures in velocity structures is crucial for cashending the competition of collisions
and collisionless wave-particle interactions and the iptssenhancement of collisional effects
due to fine velocity space structures (i.e. strong veloaigggents).

In this perspective, in Refs. [7, 8], it has been shown thlitsoans are effectively enhanced
when small scales structures are recovered in the partR@isVIn particular, collisions - intro-
duced through a collisional operator at the right side ofMlesov equation - have been mod-
eled by means of the Landau operator. The choice ofdineectcollisional operator represents
a longstanding problem. Several derivations from the Libeequation show that the most
general collisional operators for plasmas are the Lenaiéggu operator [9, 10] or the Landau
operator [5]. Both operators are nonlinear Fokker-Pldilekoperators, which involve veloc-
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ity space derivatives and integrals in the three-dimeradivalocity space. Furthermore both
operators have good conservation properties and satisffh@dtem for the Gibbs-Boltzmann
entropy. The Landau operator introduces an upper cut-dfi@integrals at the Debye length
to avoid the divergence for large impact parameters, whieBalescu-Lenard operator solves
this divergence in a more consistent way through the digpefanction. Despite the Balescu-
Lenard operator is more general compared to the Landautop&m@m this point of view, both
operators are usually derived by assuming that the plasna extremely far from the equilib-
rium and clearly this condition could be not satisfied in stly turbulent plasmas. Moreover,
it is worth to note that the numerical approach of the LerBatescu operator is more difficult
with respect to the Landau operator, since the former opeed$o involves the evaluation of
dispersion function.

The Landau operator has the following form:
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whereu = v —V/, u= |u| and the Einstein notation is introduced. In Eq. (1), and frmw on,
time is scaled to the inverse Spitzer-Harm frequewgq&'[Z] and velocity to the particle thermal
speedn.

However, even by focusing only on the Landau operator, tingpeational cost to evaluate
it numerically is huge. For example, if one considersda-3v numerical phase space¥3n
physical space andBin velocity space) discretized with gridpoints along each direction, the
computation would require aboNP operations at each time step (a three-dimensional integral
must be evaluated on each gridpoint of the six dimensiond).grhis represents a significant
challenge for computational plasma physics and, nowadtagsxtremely difficult performing
self-consistent simulations considering collisions. fEfi@re, in order to remedy to the compu-
tational complexity here described and to reduce the coatipuial cost of the simulation, in
Refs. [7, 8] we focused on a spatially homogeneous foreegtasma.

Our results indicate that, when the VDF shows small scatestsires, the approach towards
the equilibrium occurs on several characteristic timdated to the dissipation of different ve-
locity space structures. It is important to highlight thia¢ oresence of several characteristic
times is observed in the entropy growth, while the tempeeainot affected by the presence

of small scales structures, thus confirming that, in ouéadilibrium systems, the entropy is
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the proper variable which describes the evolution towdrdsequilibrium. These characteristic
times are generally faster than the times associated watti#gsipation of global features, such
as temperature anisotropies. Furthermore, they are myepsoportional to the steepness of
velocity gradients in the VDF: finer are the VDF structurésyrsger are the velocity gradients
in the VDF and faster is the dissipation due to collisionse Ppinesence of velocity gradients
hence speeds up the growth of the entropy of the system. Toobe quantitative, within the
guasi-Maxwellian assumption described above, charatietimes of collisional processes are
about the Spitzer-Harm times;}, beingvsy ~ 8 x (0.714me*InA) /(m?5(3ksT)%/2), where

n, e InA\, m kg andT are respectively the particle number density, the unittetecharge, the
Coulombian logarithm, the Boltzmann constant and the pdetemperature. Our analysis shows
instead that collisional characteristic times associati¢hl the presence of fine velocity struc-
tures are significantly smaller (from one to three orders agjnitude) than the Spitzer-Harm
time. These evidences indicate that when the particle VDR#& small velocity scale defor-
mations, the quasi-Maxwellian approximation, on which$ip&zer-Harm collisional evolution
is based, is no longer appropriate.

In order to connect our analysis to the general case of tre-8ohd, we also compared
the approach towards the equilibrium - in terms of the presef fast characteristic times -
of a strongly distorted VDF, obtained from the hybrid Vladdexwell [11] numerical simu-
lations of SW-like decaying turbulence [4], with the a VDRabed by smoothing the small
scale structures of the former one through a fitting procedLinis procedure is usually adopted
working on low-resolution VDFs which comes froim-situ measurements. It has been shown
that, when small-scale structures in the VDF are artifigisthoothed out through the fitting pro-
cedure, the physics related to fine velocity structuresfisigigely lost. Hence, high-resolution
measurements of the particle VDFs are crucial for an acewascription of the solar wind in
order to address important questions related to particdérige[12].

In Ref. [8] we focused on the importance of considering nmegdrities in the collisional op-
erator. Indeed, by comparing the fully nonlinear Landaurafee with a linearized version of
the Landau operator, we showed that both operators are@bletéct the presence of several
characteristic times associated with the dissipation ef welocity structures and the approach
towards the equilibrium is qualitatively similar in bothses. The magnitude of the characteris-
tic times is much different if nonlinearities are neglectelthracteristic times are always bigger
(i.e. collisions are slower) when nonlinearities are neiglé. Therefore, considering nonlineari-
ties is relatively important for correctly comparing ceibnal times with other dynamical times,

such as - for example - instabilities growth rates.
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We would point out that, since the Landau operator is conjoually demanding, self-
consistent high-resolution simulations cannot be culyesfforded and we restricted to the
case of a force-free homogeneous plasma, where both foct@drection terms have been
neglected. This approximation represents a caveat of thk nere presented and future stud-
ies will be devoted to the generalization of the results shi@vn to the self-consistent case.
Even though, we would remark that our analysis indicatesdbidisions work much faster on
fine velocity structures and this properties does not depenthe other terms in the Vlasov
equation but only on the physical mechanisms which rulesttiesional dissipation and the
thermalization of the system.

Finally, let us highlight that, in principle, the combinati of the ubiquitous turbulence of
plasmas such as the solar wind and the weak collisionality coastitute a new scenario to
describe the plasma heating. Indeed, the turbulence &nansfficiently energy towards smaller
scales and produces strong distortions in the VDF (i.engtgradients). Moreover, nothing
forbids the production of finer and finer scales in the turbutascade. Then, the presence of
strong gradients in the VDF naturally activates the calhsi which, as we showed, dissipate
fine structures very fast, thus producing a local sourcessipation and heating.
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