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1. Introduction Understanding the isotope effects of plasma confinement and transport is
crucial for the preparation of the non-nuclear phase of ITER (Hydrogen or Helium) and for its
subsequent phase of Deuterium-Tritium (D-T) operations. The positive scaling of energy con-
finement time with isotope mass (A) observed in experiments has not yet been fully understood
theoretically and is in contradiction of the gyro-Bohm scaling. Experiments in Hydrogen (H)
and Deuterium (D) have recently been executed on JET with the ITER-like wall (JET-ILW) in
preparation for the upcoming D-T campaign, providing stringent tests to plasma transport mod-
els. This contribution investigates the isotope effects of the pedestal structure, pedestal stability
and ELM losses in H and D Type I ELMy H-modes.

2. Energy confinement Comparative type | ELMy H-modes were obtained with both isotopes
by means of systematic power and gas scans in JET-ILW (1 MA/1 T and 1.4 MA/1.7 T). The
thermal stored energy in H and D at the same neutral gas rate of 8 x 10?! /s can be seen in
figure 1a, showing a reduction in the thermal energy confinement in H compared to D for both
I,/B; datasets. Figure 1b shows the ELM frequency (fgrm) in H and D for the 1.4 MA/1.7 T
dataset. The power threshold for type I/type III ELMs is doubled from D to H. At a given gas
rate fgrM is higher in H than in D at the same loss power (Pioss = Pheat — dW /dr), as observed
e.g in JT-60U [1].
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Figure 1: Comparison of H (in red) and D (in blue) plasmas (a) Thermal stored energy at Fgas = 8 % 102! /s
(D) feLm Vs Boss at 1.4 MA/ 1.7 T (c) Pedestal temperature vs density diagram for the 1.4 MA/1.7 T dataset.
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As shown by the n,-T, diagram in figure lc, the pedestals in H evolve along the same isobar
with respect to variations in power and gas rate, while D the pedestal pressure increases with
power at low gas rate. In H, ne pgp and T¢ pgp are exchanged at approximately constant pressure
at all gas injection levels. This is in contrast to JT-60U experiments, where density and tem-
perature profiles were matched in H and D when the stored energy was matched by raising the
H-NBI heating [1] and points to a difference in particle confinement in the two tokamaks.

3. Pedestal structure and stability At 1 MA/1 T the density (n.) pedestal is narrower than
the temperature (7;) pedestal in H, but n, and 7, width are similar in D as shown in figure 2a
and b. In contrast, at 1.4 MA/1.7 T the n, and T, widths are similar in H and D as can be seen in

figure 2c¢ and d. The maximum pres-
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Figure 2: Pedestal width in H (red) and D (blue) plasmas at
Fgas =8 —10 % 10%! e/s gas rate at 1 MA/1 T (a and b) and at

1.4 MA/1.7 T (c and d).

surements), line averaged Z.ss for the
calculation of jgs, using Sauter’s for-
mula [4], [5]) and the main ion density

assuming Be as single intrinsic impurity.

At I MA/1 T, I'ggs = 8 X 10?! e/s, the pre-ELM pedestals of H plasmas are shown to be sta-

ble to Peeling-Ballooning (P-B) modes both at low and high input power (figures 3a and b).
At 1.4 MA/1.7 T (figures 3c, d) operational point (OP) is closer to the boundary at I'gys =
4% 10% ef/s gas rate but stable at I'gys = 8.5 X 102! e/s at similar P. The H stability at
1.4 MA/1.7 T is consistent with findings in D [6], where consistency with the P-B paradigm
is found at low gas rates, but not at high power and high gas rates.

4. Isotope identity experiments It is expected that the basic dimensionless plasma physics
parameters collisionality (Vx), normalised Larmor radius (px*), ratio of the kinetic and the mag-

netic pressure () and safety factor (¢) can describe the transport in all radial regions of the
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confined plasma in a tokamak [7], [8]. An isotope identity experiment in H and D on JET with
the Carbon wall (JET-C) in H-mode obtained matched H and D plasmas with the same scaled
thermal energy confinement times (BTg /A) and scaled ELM frequencies (A fgLm/B) [7].

The same technique was adopted
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Figure 3: Pedestal stability analysis with HELENA/ELITE for H. BTg /A and Afgpm/B) were not
Top: 1 MA/I T, low vs high power at I'gss = 8 X 10?! e/s. Pedestals matched, see table 1.

stable to P-B modes. Bottom: 1.4 MA/1.7 T at same Py “low” vs The ELM energy losses (dWir )

“medium” gas rate. OP is closer to P-B boundary at lower gas rate. have been evaluated from two semi-
independent measurements: a) the stored energy from EFIT equilibrium reconstruction
(dWgrrr) and b) HRTS profiles (dWyrts). A comparison of ELM losses evaluated from
the two methods on a subset of JET-ILW H and D type I ELMy H-modes is shown in

figure 5. The ELM losses given by the two different measurements are broadly consis-
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Figure 4: Matched dimensionless plasma parameter profiles in the pre-ELM phase in H (red) and D (blue)
plasmas. (a) the ratio of the kinetic and the magnetic pressure (B), (b) collisionality (vx), (c) the normalised
Larmor radius (p*).

tent, especially in controlled scans, but differences between individual discharges can be
as high as a factor of 2 due to intrinsic difficulties of these measurements. The ELM
losses normalised to the pedestal stored energy (dWgpm/Wpeq) are significantly higher in
the H counterpart of the matched pair from both measurements as shown in table 1.

The fact that an isotope identity match cannot be obtained simultaneously with pre-ELM and
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ELM averaged profiles suggests that the ELM behaviour is very different in the H and D plasmas
and implies that additional physics (e.g. atomic physics) may be playing a role at the pedestal,

which is not captured by the basic dimensionless plasma physics parameters.

I, B, | Gasrate | P W, | Afeum/B | Btgn/A || dWeprr/ | dWharts/
[MA] | [T] [e/s] [MW] | [MJ] [Hz/T] [Ts] Wped Wped
H #91488 1.0 1.0 | 4.5¢21 8.6 1.03 40 0.102 0.189 0.184
D #92222 1.7 1.7 1.5e22 16.6 3.41 58 0.148 0.116 0.088

Table 1: Parameters of the H and D plasmas where pre-ELM dimensionless parameter profiles were matched.
5. Conclusions A reduction in the thermal en-

ergy confinement time in H with respect to D is Subset of isotope experiments dataset
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Figure 5: Comparison of ELM losses evaluated from

EFIT stored energy and HRTS profiles on a subset of
JET-ILW H and D type I ELMy H-modes.

structure can also be influenced by the current
and field in the given plasma, as we observed
narrower n, than 7, pedestals in H at 1 MA/1 T,
but similar pedestal widths both in H and D at 1.4 MA/1.7 T. The pedestal stability in H is
qualitatively consistent with results found in D for JET-ILW, but an isotope effect through the
bootstrap current is not excluded and will be investigated. H and D discharges with matched v,
p*, B and g profiles in the pre-ELM phase indicate larger ELM losses dWgpm/Wpeq in H than

in D, suggesting different ELM behaviour with different isotope mass.
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