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1. Introduction. Extreme loads on the vacuum vessel wall during disruptions is already an 

issue for JET [1, 2]. Their mitigation is an urgent task to be solved to ensure the integrity of 

plasma-facing components in ITER [2, 3]. Recent simulations [4, 5] indicate that two yet 

undeveloped sensitive areas in the task deserve careful study. First is the induction of strong 

poloidal currents in the wall during current quench (CQ) [4]. Second is the generation of 

large-amplitude force on the wall during thermal quench (TQ) [5] at still unchanged net plasma 

current. It has been confirmed analytically that both effects can have a strong impact on the 

integral forces [6]. Here the analysis is extended on the local distributions.  

 The study is focused on analytical calculation of the distribution of the disruption forces 

over the poloidal angle for both TQ and CQ. The presented approach is based on the Maxwell 

equations and force balance required for plasma equilibrium in a tokamak. The rapid events are 

considered when the plasma-produced field does not penetrate through the vessel outwards 

because of the skin effect in the wall. Finally, the analytical expressions for the local forces on 

the wall are derived within the standard large-aspect-ratio tokamak model. Here, the plasma is 

treated as an axially symmetric toroid separated from the wall by a vacuum gap. There is no 

halo current in such system. The toroidal and poloidal currents in the wall have a purely 

inductive nature. This corresponds, at least, to fast events in JET that produce the 

electromechanical loads predominately due to eddy currents [7]. In other cases, this covers an 

early stage of the disruption before the plasma-wall contact. 

2. Formulation of the problem. We consider the surface density of the force on the wall, 

wall

w d)( Bjf ,     (1) 

where the integration is performed over the length (thickness) across the wall. With substitution 

BBBBj )(2/2

0 ,     (2) 

which is the consequence of the Maxwell equations, and by using the equality 
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where wn  is the (outwardly directed) unit normal to the wall and 
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/|| wn ,     (4) 

we obtain from (1) 
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inw
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ww BBnBnf )(5.0 2

0 .    (5) 

Only the terms representing a possible jump of B  across the wall are retained here. This 

corresponds to disregard of the last term in (3) proportional to the wall thickness wd  that is 

always much smaller than the wall minor radius wb  in tokamaks. Also, it is assumed that 
out

in
B  

is tangential to the wall. The approximations are well justified if a large force is expected. 

 Below we discuss the force normal to the wall, 

mww pnf ,      (6) 

which is determined by the jump in the magnetic pressure )2/( 0

2
Bmp . This is applied to 

events rapid enough for treating the wall as an ideal conductor. Then  

)()( 0tftfff
out

in
,     (7) 

where 0t  is the time moment before the disruption, and both quantities in f  are taken at the 

same point at the inner side of the wall because the field B  remains unchanged behind the wall. 

 With axisymmetry, for a circular plasma we have (approximately) at the circular wall 

)cos21()cos21( 2

0

222

wwwJ BBB ,   (8) 

where )2/(0 bJBJ  is the averaged poloidal magnetic field at the plasma boundary, J  is 

the plasma current, b  is the plasma minor radius, wbb / , Rbww / , R  is the major radius, 

w  is similar to the ‘Shafranov’s ’ [8], but describing the poloidal field distribution at the 

wall,  is the poloidal angle with 0  at the outer midplane, and the second summand is the 

contribution from the toroidal field, which is rRBBt /0  in the plasma-wall vacuum gap with 

cos1/ wRr  at the wall. Accordingly, 

cos10 mmm ppp       (9) 

with 0mp  and 1mp  independent of : 

2

0

22

002 BBp Jm ,      (10) 

)(22 2

0

22

10 BBp wJwm .     (11) 

Variations of these quantities can be expressed through the plasma parameters by using the 

results of the plasma equilibrium theory [8] plus the boundary conditions at the wall (here, 

resulting in the flux conservation). Our goal is to find the disruption-produced mp  in (6). 
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3. Calculations. The disruptions and the disruption mitigation events are described by the rapid 

drops of plasma pressure p  (TQ) and current J  (CQ). These lead to induction of the poloidal 

current wI  in the wall and a small change in 0B :  

00 2 BRIw .     (12) 

If the wall reacts as a magnetic flux conserver, equations (28), (30) and (41) in [6] give us 
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B ,   (13) 

where the overhead bar denotes the averaging over the plasma volume plV , and gV  is the 

volume of the plasma-wall toroidal region. Then (10) yields  

ppm

2

0       (14) 

irrespective of JB . This should be compared with incongruous  

)2/( 0

22

0 J

fil

m Bp ,     (15) 

which is the consequence of (10) at 00B . The superscript fil indicates that such must be 

0mp  in the models/codes with a wall replaced by the toroidal filaments and 0/0 dtdB , so that 

only the poloidal field is considered varying while 0/ tB  during the plasma evolution. 

 To calculate 1mp , we use the integral result from [6] for 

)(5.0)( 10 mmww
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rr ppSdSpdSdF enefeBj . (16) 

Here rre  is the unit vector along the major radius, wwddSd  is the volume element, 

ww RbS 2)2(  is the full lateral area of the wall, and drbdS ww 2  is its element. The last 

term in (5) does not give a contribution in rF  because of the assumed up-down symmetry. The 

final equality here is obtained with substitution (9) and cosrw en  for a circular wall.  

 According to equation (44) from [6], 

2
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b
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
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where 
22 / Ji BB  is the internal inductance per unit length of the plasma column, B  is the 

poloidal field so that )(bBBJ . This combined with (14) and (16) gives us 
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whereas the ‘filamentary’ or ‘fixed 0B ’ consequence of (11) will be 
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4. Discussion. Expressions (14) and (18) covering both TQ and CQ are immensely different 

from (15) and (19) describing 0mp  and 1mp  in the models that eventually disregard the 

poloidal current induced in the wall, such as the used in the DINA code [5], for example. In 

such models, only the toroidal current is allowed in the wall, while 0B  (entering (8), (10) and 

(11) here) is treated as a time-independent constant so that always 00B . Then (15) and (19) 

yield 00

fil

mp  and (because of w ) 01

fil

mp  during TQ at 0JB , in contrast to predictions 

of our equations (14) and (18): ppm

2

0  and 01mp . 

 The difference is also substantial for the CQ at 0p . From (14) we have 00mp  

during CQ, while (15), the consequence of (10) at 00B , gives large )2/( 0

22

0 J

fil

m Bp . 

 The derived relations show that TQs must lead to 00mp  (while 01mp  at 0JB ). 

Then 05.0 mwwr pSF , which confirms the conclusions of [5] and [6] that large forces on the 

wall can develop during TQs. This fact deserves notion as contradicting to the commonly 

adopted view [3] that high electromagnetic loads on the tokamak structures can appear at rapid 

quench of the plasma current, while the TQ-produced forces have been traditionally ignored. 

5. Conclusion. When the wall is modelled by a set of toroidal filaments, as in the DINA code 

[5], 0B  enters the disruption task as a constant. Then only w  in (8) will be the parameter 

varying during TQ at 0JB , and (6) will give us cos1

fil

mww pnf , see also (15) and (19). 

This explains the force pattern on the first plot in Fig. 9 in [5]. Actually, as it follows from (14) 

and (18), the distribution of the disruption force on the first wall just after TQ must be 

essentially different: pww

2
nf  with negative p . This is the reason why the DINA must be 

overestimating rF  in [5] by factor of 2 (estimated for a circular plasma), as demonstrated in [6]. 
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