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1. Introduction. Extreme loads on the vacuum vessel wall during disruptions is already an
issue for JET [1, 2]. Their mitigation is an urgent task to be solved to ensure the integrity of
plasma-facing components in ITER [2, 3]. Recent simulations [4, 5] indicate that two yet
undeveloped sensitive areas in the task deserve careful study. First is the induction of strong
poloidal currents in the wall during current quench (CQ) [4]. Second is the generation of
large-amplitude force on the wall during thermal quench (TQ) [5] at still unchanged net plasma
current. It has been confirmed analytically that both effects can have a strong impact on the
integral forces [6]. Here the analysis is extended on the local distributions.

The study is focused on analytical calculation of the distribution of the disruption forces
over the poloidal angle for both TQ and CQ. The presented approach is based on the Maxwell
equations and force balance required for plasma equilibrium in a tokamak. The rapid events are
considered when the plasma-produced field does not penetrate through the vessel outwards
because of the skin effect in the wall. Finally, the analytical expressions for the local forces on
the wall are derived within the standard large-aspect-ratio tokamak model. Here, the plasma is
treated as an axially symmetric toroid separated from the wall by a vacuum gap. There is no
halo current in such system. The toroidal and poloidal currents in the wall have a purely
inductive nature. This corresponds, at least, to fast events in JET that produce the
electromechanical loads predominately due to eddy currents [7]. In other cases, this covers an
early stage of the disruption before the plasma-wall contact.

2. Formulation of the problem. We consider the surface density of the force on the wall,

f,= [(ixB)dr, , (1)

wall

where the integration is performed over the length (thickness) across the wall. With substitution

jxB=-VB?/2+(B-V)B, )
which is the consequence of the Maxwell equations, and by using the equality
IVfde =n, f[" + jv” fde 3)
wall wall

where n,, is the (outwardly directed) unit normal to the wall and



44*" EPS Conference on Plasma Physics P5.136

V,=V-nglol, 4)
we obtain from (1)
o |out out
#f, ==05n,B% "+ (n, -B)B[". (5)

Only the terms representing a possible jump of B across the wall are retained here. This

corresponds to disregard of the last term in (3) proportional to the wall thickness d,, that is

always much smaller than the wall minor radius b, in tokamaks. Also, it is assumed that B‘:ﬂ

is tangential to the wall. The approximations are well justified if a large force is expected.

Below we discuss the force normal to the wall,
fu =0, (6)
which is determined by the jump in the magnetic pressure P, = B?/(2,). This is applied to
events rapid enough for treating the wall as an ideal conductor. Then
— =& = () - (L), (7)
where 1, is the time moment before the disruption, and both quantities in Jf are taken at the

same point at the inner side of the wall because the field B remains unchanged behind the wall.

With axisymmetry, for a circular plasma we have (approximately) at the circular wall
B’ = x’B2(L+2¢,A,, c0sO) + B (1- 2¢, cos0), (8)
where B, = 14,J /(22b) is the averaged poloidal magnetic field at the plasma boundary, J is
the plasma current, b is the plasma minor radius, x =b/b,,, ¢, =b, /R, R is the major radius,

A, is similar to the ‘Shafranov’s A’ [8], but describing the poloidal field distribution at the

wall, @ is the poloidal angle with & =0 at the outer midplane, and the second summand is the

contribution from the toroidal field, which is B, = ByR/r in the plasma-wall vacuum gap with
r/R=1+g,cos@ atthe wall. Accordingly,
Pm = Po + Pry COSE )
with p,, and p,, independent of & :
24t,Ppo = K°BZ + BZ, (10)
214,Pyy = 26, (K°B2A,, — BY). (11)
Variations of these quantities can be expressed through the plasma parameters by using the

results of the plasma equilibrium theory [8] plus the boundary conditions at the wall (here,

resulting in the flux conservation). Our goal is to find the disruption-produced &p,, in (6).
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3. Calculations. The disruptions and the disruption mitigation events are described by the rapid
drops of plasma pressure p (TQ) and current J (CQ). These lead to induction of the poloidal

current |, in the wall and a small change in Bj:
U, =27R3B,. (12)

If the wall reacts as a magnetic flux conserver, equations (28), (30) and (41) in [6] give us

v ~ _
JB; v, ilvg 524, p~B}) =x*5(2u,p ~B}), (13)

where the overhead bar denotes the averaging over the plasma volume V,, and V is the

pl>

volume of the plasma-wall toroidal region. Then (10) yields

Do =K°P (14)
irrespective of 0B, . This should be compared with incongruous
P = K°BT 1(2445) , (15)

which is the consequence of (10) at dB, =0. The superscript fi/ indicates that such must be
M, in the models/codes with a wall replaced by the toroidal filaments and dB,/dt =0, so that

only the poloidal field is considered varying while 0B/ot #0 during the plasma evolution.

To calculate op,;, we use the integral result from [6] for

I:I' = J‘(j X B) : el'dT = (wa ’ eI'dSW = <j.nW ’ eré‘pmdsw = 058W5(8W me + pml) * (16)

wall wall wall

Here e, = Vr is the unit vector along the major radius, dz =dS,d, is the volume element,
S, = (27)*Rb,, is the full lateral area of the wall, and dS, = 22rh,d@ is its element. The last
term in (5) does not give a contribution in F, because of the assumed up-down symmetry. The
final equality here is obtained with substitution (9) and n, -e, =c0sé for a circular wall.

According to equation (44) from [6],

2
F. =05S,¢,k°68 E+B—J Inb—‘”+g—i , (17)
r w=w /,[0 b 2

where (; = B?/ BJ2 is the internal inductance per unit length of the plasma column, B, is the
poloidal field so that B, = B,(b) . This combined with (14) and (16) gives us

2
o o :gwxzé'BJ[lan+£i} (18)
Ho b2

whereas the ‘filamentary’ or ‘fixed B,’ consequence of (11) will be
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5pr:1li :ngzé(AWBJZ)/(ZﬂO) . (19)
4. Discussion. Expressions (14) and (18) covering both TQ and CQ are immensely different
from (15) and (19) describing &,,, and op,, in the models that eventually disregard the

poloidal current induced in the wall, such as the used in the DINA code [5], for example. In

such models, only the toroidal current is allowed in the wall, while B, (entering (8), (10) and
(11) here) is treated as a time-independent constant so that always 6B, =0. Then (15) and (19)

yield ™ =0 and (because of A,) o =0 during TQ at 8B, =0, in contrast to predictions

m0 ml
of our equations (14) and (18): &,,, = x> and &, =0.
The difference is also substantial for the CQ at p=0. From (14) we have &,, =0

during CQ, while (15), the consequence of (10) at B, =0, gives large o = x°B’ 1(244,) -

mO

The derived relations show that TQs must lead to &p,,, <0 (while &, =0 at 5B, =0).
Then F, =0.5¢,S,,,,,» Which confirms the conclusions of [5] and [6] that large forces on the

wall can develop during TQs. This fact deserves notion as contradicting to the commonly
adopted view [3] that high electromagnetic loads on the tokamak structures can appear at rapid
quench of the plasma current, while the TQ-produced forces have been traditionally ignored.

5. Conclusion. When the wall is modelled by a set of toroidal filaments, as in the DINA code

[5], B, enters the disruption task as a constant. Then only A, in (8) will be the parameter

varying during TQ at 6B, =0, and (6) will give us f, =n, ! cosd, see also (15) and (19).

This explains the force pattern on the first plot in Fig. 9 in [5]. Actually, as it follows from (14)
and (18), the distribution of the disruption force on the first wall just after TQ must be

essentially different: f, =n x°dp with negative 5p. This is the reason why the DINA must be

overestimating F, in [5] by factor of 2 (estimated for a circular plasma), as demonstrated in [6].
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