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The Ion Temperature Gradient (ITG) mode plays a crucial role in the transport of ion energy

in tokamaks. In addition, it is likely that ITG-driven turbulence is the main source for zonal

flows and Geodesic Acoustic Mode (GAM) fluctuations, which are ubiquitous in tokamaks. A

number of kinetic [1, 2] and fluid [3–5] models describing ITG modes have been studied in

the literature. Many relevant simulations, using various numerical codes [6], have been targeted

at such micro-turbulence studies, however these simulations are often performed in simplified

geometry, or on restricted domains. Conversely, large-scale phenomena such as ELMs, low m

magnetic perturbations, and shear flow structures are studied using different codes that take

into account realistic plasma geometry, such as the divertor configuration, on a global domain.

Nevertheless, there are explicit phenomena in each of these simulation regimes which are ex-

pected to be inherently coupled, eg. ITG turbulence driving large scale flows, low m magnetic

islands affecting micro-stability via the modification of background profiles, etc. Therefore, it

is important to describe these interacting phenomena using a single, coherent, framework.

JOREK [7], is a code which has been designed to study large-scale tokamak phenomena

over a complete and realistic simulation domain. It solves a set of MHD-like equations in a

finite-element framework, using third-order Bezier curves and implicit time stepping. These

techniques are not restricted to the MHD equations, and thus other suitably formulated fluid

models can be solved using JOREK’s framework.

The goals of the presented material are twofold. Primarily, we study JOREK’s capability for

simulating ITG instabilities. To do this, we use a base two-fluid ITG model which is common

in the literature [3–5]. We benchmark the resulting simulations against previous results attained

within the linear regime [6]. Upcoming investigations on this front will proceed into the non-

linear regime, then continue with the inclusion of more advanced profile and geometric effects.

The eventual goal is to simulate zonal-flows and transport barrier formation, along with the

subsequent L-H transition.

Concurrent to our simulation of the base model, we also develop an advanced ITG model,
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which includes higher order terms, expected to produce results in closer agreement to kinetic

theory. The base model accounts for the inertial/polarization terms in the ion density equa-

tion, and the divergence of the diamagnetic heat flux in the energy (balance) equation, however

it neglects the polarization terms entirely in the energy equation. The advanced model incor-

porates the polarization terms into the energy equation at the same order as in the continuity

equation, including inertial contributions to the heat flux. The higher order inertial velocity and

heat flux terms are calculated by an asymptotic expansion in the low frequency approxima-

tion, ω < ωce. This procedure also involves the gyroviscous cancellation in both the energy and

density equations, which allows the model to provide a consistent description of the ion Finite

Larmor Radius (FLR) effects to a higher order than in the base model. These equations provide

an asymptotically exact description of finite ion Larmor radius effects (FLR) in the limit of

small kθ ρi. For large kθ ρi, this model reproduces the Pade-type approximants [8] to the Bessel

function which are used in gyro-fluid models [9]. At the current time, this advanced model is

only studied in the linear and local limit, however future studies will incorporate this model into

JOREK as well, and study the difference in nonlinear ITG behavior.

To display the two sets of equations efficiently, we present the formulation of our adapted

model, then identify the terms which are absent in the base model. We begin with the continuity

equations for ions, under the condition of quasineutrality,

∂n
∂ t

+∇⊥ · (nv(0)⊥i )+n0 (∇⊥ ·v
(1)
⊥i )+∇‖(nv‖i) = 0, (1) v(0)⊥i =

b̂×∇φ

B
+

b̂×∇pi

enB
. (2)

For the higher order terms, we use the gyroviscous cancellation [10] which results in:

∇ ·v(1)⊥i = ∇ ·

(
b̂

ωci
× d

dt
v(0)⊥i +

b̂×∇ ·Πi

enB

)
≈ ∇ · b̂

ωci
× d0

dt
v(0)⊥i ≈−ρ

2
i ∇⊥·

d0

dt
∇⊥

(
eφ

Ti0
+

pi

pi0

)
,

(3)

where d/dt = ∂/∂ t +
[(

vE +vpi +v‖i
)
·∇
]
, and d0/dt = ∂/∂ t +(vE ·∇). After some algebra,

we are left with the final form of our continuity equation,

∂ni

∂ t
+vE ·∇ni−2ni(vE +vpi) ·∇ lnB−n0ρ

2
i ∇⊥·

d0

dt
∇⊥

(
eφ

Ti0
+

pi

pi0

)
+∇‖(niv‖i) = 0. (4)

Parallel momentum balances are required, which are taken in the electrostatic limit as,

d0v‖i
∂ t

=− e
mi

∇‖φ −
1

nmi
∇‖pi, (5) 0 = ∇‖φ −

Te

en
∇‖n, (6)

where we have ignored electron momentum and used ∇‖Te = 0, since we are considering low

frequency modes, ω < vTek‖, so the electron temperature is in equilibrium on flux surfaces.

The final governing equation is the ion energy balance,

3
2

dpi

dt
+

5
2

pi∇ ·vi +∇ ·q+Π : ∇vi = 0, (7)
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where vi = v(0)i⊥ +v(1)i⊥ +v‖ib̂, and we use the gyroviscous cancellation once more, leading to the

same simplification as in (3), along with ∇ ·q+Π : ∇vi → ∇ · (q(0)+q(1)) [10, 12]

q(0) =
5
2

cpi

eB0
b̂×∇T. (8) q(1) =

1
ωci

b̂× d0

dt
q(0) ≈ −ρ

2
i ∇⊥ ·

d0

dt
∇⊥

(
Ti

Ti0

)
. (9)

Performing some algebra yields the final form of the ion energy equation,

∂ pi
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3
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5
3
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3
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− 5
3

piρ
2
i ∇⊥ ·

d0

dt
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+

pi

pi0
+
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)
= 0.

(10)

Thus, the advanced system consists of the four equations (4), (5), (6), and (10). The base system

consists of the same equations, however ignores all Finite Larmor Radius (FLR) terms,∼ ρ2
i , on

the second line of the energy equation (10), and the pressure-dependent FLR term (containing

pi/pi0), in the continuity equation (4).

In order to simulate these equations in JOREK, we add artificial dissipation terms to equations

(4), (5), and (10). The levels of dissipation are verified to cause no significant alteration of the

mode frequencies in the region of interest, kθ ρi . 1. We use profiles suited to the standard

Cyclone case [6], although the equilibrium Shafranov shift was artificially reduced to recreate an

environment more similar to that of the flux-surface codes used in the comparison. Results from

a particular (n = 30) simulation are shown in figure 1. One can see that the poloidal location of

the maximal mode envelope is rotated from the midplane by a ballooning angle, θ0 ∼ 30 o. This

rotation is found to decrease for smaller values of kθ ρi, at a constant ηi, and increase for a fixed

kθ ρi, but decreased ηi. This is consistent with the behavior expected from studies of ballooning

angle [11], and may result here due to the presence of equilibrium diamagnetic flows.

A series of simulations are performed using different toroidal harmonics, n, and perturbing

the poloidal harmonic m = nq(rm), where q(rm)≈ 1.45 is measured at the location of maximum

temperature gradient. This leads to growth rates and real frequencies plotted in figure 2, where

we use kθ = m/rm. Our results agree with those in [6] to within the deviations expected between

flux-tube and global simulations. Specific differences originating from using the flux-tube equi-

librium in [6] are discussed in [13]. Further skewing of the data can originate from the variation

in the normalization values (vTi, Ln, and ρi) over the global domain, and the use of kθ = m/rm,

when in reality a spectrum of m are excited.

Linear analysis of the base model, at the location of maximum temperature gradient, finds

reasonably good agreement with the gyrokinetic results, as is also shown in figure 2. Inclusion

of the higher order terms is found to make the mode unstable at significantly larger values of

kθ ρi. This may be expected, since the model contains terms involved in both the toroidal ITG
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Figure 1: ITG mode in JOREK,

n = 30→ kθ ρi ≈ 0.4
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Figure 2: Growth rate and frequency of base model,

compared to gyrokinetic results in [6]

(destabilization from magnetic curvature and gradients), and slab ITG (destabilization from

finite parallel ion velocity). In linear analyses, the competition between these destabilization

mechanisms may not be represented properly, and can lead to inaccurate results in wavelength

regimes where there is competition between destabilization mechanisms, as is discussed for

ballooning and interchange modes in [14]. This effect is expected to play a role here due to the

competition of toroidal and slab ITG mechanisms for values of kθ ρi ∼ 1. Further analysis of

this behavior will be carried out using nonlinear simulations.
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