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Blob transport is subject to intense study in fusion energy research for the understanding

and prediction of particle and heat fluxes onto the plasma-facing components (PFC) [1]. These

structures originate around the separatrix at the outer midplane, forming filaments which expand

and propagate in the parallel and, respectively, perpendicular (outwards) direction, with respect

to the total magnetic field. Although considerable work has been done to address the perpendic-

ular (radial and poloidal) transport in the scrape-off-layer (SOL) plasma, both experimentally

and numerically, the dynamics of these filaments along the flux tube did not receive sufficient

investigative attention. Up to now, flux tube dynamics sim-
ulations assumed constant temperatures, forced Maxwellian-
distributed species and/or no divertor physics. Experimentally,
mean parallel flows can only be estimated by using Mach probes
[2].

This work aims to study the dynamics of a blob crossing a
magnetic field line in the near SOL (Figure 1, green line) and
its influence in terms of heat and particle flux along the mag-
netic field line, up to the inner and outer divertors, in deuterium
plasma. Emphasis is given on the first phase of the blob — the
transport of the blob’s hot electrons to the divertor.

The simulation is done in two steps: first, a steady-state
plasma is reached, with realistic plasma profiles in the paral-
lel direction; on top of it, a blob with given density and tem-

perature is superimposed at the outer midplane, as shown in
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Figure 1: Cross-section of
magnetic configuration of a di-
verted medium-size tokamak.
Green line: the investigated

magnetic field line.
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tions. The numerical simulations

are performed via BIT1 code [3] and the simulated plasma parameters are relevant to the SOL
of medium-size tokamaks (MST).

In Figure 3, we observe that the hot electrons of the blob leave their initial position at the
outboard midplane much faster than the hot ions, creating a local positive potential perturbation.
This potential perturbation produces an electric field which attracts the electrons and repels the
ions of the background plasma, restoring the quasineutrality of the plasma (see the total electron
and ion densities, green curves).

Even if the blob enters the investigated magnetic field line at the midplane, we observe in our
simulations that its hot electrons can reach the divertors (see Figure 4), for the lower plasma
density cases investigated. The time for the hot electrons of a blob to reach the two divertors
can be identified in Figure 5 by the maximum in the timetrace of the blob’s electron energy flux
(red curves), where t=0 s represents the activation of the blob’s source at the outer midplane. We
also observe that the transition between single and bi-Maxwellian EEDFs at the two divertors
takes place in a narrow range of the main plasma density in the SOL, i.e. when the density varies
around 2-3 times (Table 2), comparable to experimental findings [4].

The ion energy fluxes at the divertors (black curves) increase by 50% when the hot electrons
of the blob arrive. This coincides with the maximum potential drop between the midplane and

each of the divertors, which increases the ion acceleration towards the two divertors.

Table 1: The simulated plasma cases. The values refer to the densities (n) at the outer midplane before
(left column) and at the end (right column) of the blob injection and the source temperatures (T) for the

main plasma source and the blob source.

Main-plasma source Blob source
n[108m=3] T.[eV] T;[eV]|n[10¥m™3] T.[eV] T;[eV]

1 5

2 10 20 11 50 50

3 16

7 35
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Figure 3: BIT1 simulation of a flux tube close to separatrix in the SOL plasma (blue curves) of a MST

and a blob crossing it (red curves) at the outer midplane (x=1,2 m). Poloidal profiles of plasma potential

(V). (e)lectron and (i)on densities (n) and temperatures (T) are presented for different moments in time

since the activation of the blob’s source. The blob source was active for 10 Us, to emulate a radial

transition time across the flux tube at the midplane. The total density is represented by the green curve.
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Figure 4: Evolution of the electron energy distribution functions (EEDFs) at the position of the inner

divertor, midplane and the outer divertor, for n = 1-10"8m=3. The blue curve represents the main (back-

ground) plasma, the red curve represents the blob and the green curve represents the total plasma.
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Table 2: Occurrence of non-Maxwellian EEDFs at the divertors vs. SOL plasma density, during a blob

crossing the midplane.

Electron Energy Distribution Function (EEDF)
n [10'® m~3] | Inner divertor Midplane  Outer divertor Legend
1 b b b s = single
2 b b b Maxwellian
3 S b b b = bi-
7 S b S Maxwellian
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