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Introduction

Considering that collisions are known to play important role in direct set of physical phe-

nomena in tokamak plasmas, it is essential to develop reliable and robust collisional operator

for multiple species when addressing the transport of impurities and momentum transport. Al-

though impurity density is very low in tokamak plasmas, its collision frequency can be of same

order as of the main ions due to the impurities large charge number. The collision operator

previously implemented in the gyrokinetic code GS2 consists of a gyro-average of the exact

linearized Landau test-particle operator and a model field-particle operator that conserves num-

ber, momentum, and energy while satisfying Boltzmann’s H-Theorem. It also has finite larmor

radius effects included in it. Each of these properties is satisfied exactly in the code, and the

collisions are treated implicitly in time. However, it only accounts for like-species collisions of

ions. Here we adopt the model proposed by Sugama [2] to include collisions between differ-

ent ion species in GS2. In order to retain exact numerical conservation properties, we modify

Sugama’s model field-particle operator. Furthermore, we have implemented a recursive imple-

mentation of the Sherman-Morrison identity to facilitate computationally efficient matrix in-

version for the implicit solve. This collision operator is advancement of previous self-collision

operator in [3] [4].

Linearised collision operator

The collision operator for cross species collision is used from [2] which satisfies the particle,

momentum and energy conservation. It satisfies the adjoint relation and boltzmann’s H theorem

at equal temperatures and its gradients. Test particle part has maxwellian in the background and

field particle part has fields in the background. The collision operatorr is taken from [2]

CL
ab(δ fa,δ fb) = CT

ab(δ fa)︸ ︷︷ ︸
Test particle

+ CF
ab(δ fb)︸ ︷︷ ︸

Field particle

(1)
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The linearised collision operator for any temperature is

CT
ab(δ fa) = L δ fa +Dδ fa (2)

where

L =
νab

D (v)
2

∂

∂ξ
(1−ξ

2)
∂δ fa

∂ξ
+

1
1−ξ 2

∂ 2δ fa

∂ 2φ
(3)

is a lorentz or pitch angle scattering operator

D =
1
v2

∂

∂v

[
ν‖

ab(v)
2

v4 f0a
∂

∂v
δ fa

f0a

]
(4)

Field particle term has to be chosen such that it satisfies the given properties below

Properties

Collision operator conserve particles [5], momentum [6] and heat [7]. It also have to satisfies

the Boltzmann’s H theorem [8]. ∫
d3vCL

ab(δ fa) = 0 (5)

ma

∫
d3vvCL

ab(δ fa) = mb

∫
d3vvCL

ba(δ fb) (6)

ma

∫
d3v

v2

2
CL

ab(δ fa) = mb

∫
d3v

v2

2
CL

ba(δ fb) (7)

Ta

∫
d3v

δ fa

f0a
CL

ab[δ fa]+Tb

∫
d3v

δ fb

f0b
CL

ab[δ fb]≤ 0 (8)

Numerical method to implement collison operator

GS2 is a flux tube simulation code for low frequency turbulence studies. It solves gyrokinetic

equations [1]. It treats collisional and collision-less physics separately because of operator split-

ting of the gyrokinetics equation terms. Equation 10 calculates the distribution function from

collisions. The collision operator is divided in two parts which is given in equation 13 and 14.

Equation 13 and 14 solves lorentz and diffusion test and field particle pieces solves separately

which conserves the moments independently.

∂δ fak⊥
∂ t

=CGK[δ fak⊥]+A [δ fak⊥] (9)

δ f n+1
ak⊥ −δ f ∗ak⊥

∆t
=CGK[δ f n+1

ak⊥ ] (10)

δ f ∗ak⊥−δ f n
ak⊥

∆t
= A [δ f n

ak⊥,δ f ∗ak⊥] (11)
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δ f n+1
ak⊥ = (1−∆tCGK)

−1
δ f ∗ak⊥ (12)

δ f ∗∗ak⊥ = (1−∆t(Lab +ULab))
−1

δ f ∗ak⊥ (13)

δ f n+1
ak⊥ = (1−∆t(Dab +UDab +Eab))

−1
δ f ∗∗ak⊥ (14)

The underlined matrices in equation 13 and 14 are dense matrices which can be written as an

outer product of vectors. The Lab and Dab are the tridiagonal matrices. The inversion of these

matrices can be done using sherman morrision formula [4] which can be cheaper to solve than

other numerical schemes. The sherman morrison method is already given in [4] to solve the

self collision operator and recursive sherman sherman morrision is given in 1 to solve for cross

species collsion which can also be used to solve for arbitrary number of outer products. A0 in

equation 15 is tridiagonal matrices which is equivalent to Lab and Dab, u and v are the two

parts of each field particle pieces ULab, UDab and Eab. The recursive sherman morrison is used

to solve equation 18. Every ui and vi is used to invert its corresponding Ai+1 after inverting it

n+1 times, which is the number of outer products, we obtained the solution of equation 15

Mx = b⇒M = A0 +
n

∑
i=0

ui⊗vi (15)

x = M−1b (16)

Ai+1 = Ai +ui⊗vi (17)

x = (An +un⊗vn)
−1 b (18)

x = A−1
n b−

[
vi ·A−1

n b
1+vi ·A−1

n ui

]
A−1

n un (19)

44th EPS Conference on Plasma Physics P5.171



A−1
0 u0 A−1

0 u1 . . . . . . A−1
0 ui . . . . . . . . . A−1

0 un A−1
0 b

A−1
1 u1 . . . . . . A−1

1 ui . . . . . .
...

...
...

...

...
... A−1

i ui A−1
i ui−1 A−1

i un A−1
i b

...

...
...

...
...

...
... A−1

n−1un−1 A−1
n−1un

...
... A−1

n un A−1
n b

...
... A−1b







Figure 1: Flowchart of Recursive Sherman morrison formula to solve multiple species collisions

Conclusion

So far, Gyroaveraged multi-species collision operator is implemented in GS2. Recursive sher-

man morrision algorithm was obtained to implement in GS2’s collision operator. Sherman mor-

rision formula is used for field particle terms of collision operator. Field particle term of collision

operator was obtained which satisfies the conservation of particle, momentum and energy be-

tween cross species collision. It also satisfies the boltzmann’s H-theorem. Test cases for multiple

species will be done in future.
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