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Applying neural networks for tokamak plasma turbulence predictions
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The objective of this study is to train a neural network to emulate turbulent transport pre-
dictions of benchmarked gyrokinetic simulation codes [1]. One limitation in this modelling
approach is to balance the two conflicting constraints of maximizing the training set size and
minimizing the compuational cost of generating it, as gyrokinetic codes are expensive to exe-
cute [2]. In order to overcome this, it was decided that the simulation inputs can be derived from
previous experimental measurements, such as those of JET.

The gyrokinetic code to be used in this study is QuaLiKiz [3], a quasi-linear gyrokinetic
code. The inputs of interest in this simulation code are typically the densities and temperatures
of the various particle species in the plasma and their gradients, as they drive the growth of
linear instabilities in the plasma. Other required parameters include the safety factor, magnetic
shear, toroidal flow velocity, effective ion charge, magnetic pressure, and flux surface shape
parameters. Due to the requirement for multiple gradient quantities, the experimental profiles
must be determined by using a fitting procedure in order to extract them. Afterwards, all relevant
data for the simulation input and output validation are saved within a profile database.

For this application, a Gaussian process regression (GPR) technique was chosen as the fitting
procedure, since it provides an error estimate on the fit derivative as well. These error estima-
tions provide a more rigourous definition of the parameter range that needs to be covered by
the gyrokinetic simulations while simultaneously adhering to scenarios described by the experi-
mental data. A brief overview of the GPR is provided, limited in notation to the one-dimensional
case as it is sufficient for the purposes of kinetic profile fitting.

The GPR technique is similar to that of a least-squares regression, except that it makes use
of the so-called kernel trick in order to employ an infinite set of basis functions in the fit. By

using this trick, the predicted values of the model can be expressed solely in terms of a kernel,
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denoted as k(xy,x7), as follows [4] [5]:
Y, =KX, X)[K(X,X)+R(X,X)] "'y
Gi = K(X,, X))+ R(X,,X.) — K(X.,X)[K(X,X)+R(X,X)] ' K(X,X,) (D
R(x1,x2) = r(x1) r(xp) 0(x1 —x2)
where (X,Y) are the discrete set of data points input into the GPR, (X,,Y) are the discrete set
of data points to be predicted by the GPR, K represents the kernel evaluated at a set of discrete
points, r(x) represents the standard deviation of the data, and 9§ is the Kronecker delta. Note that
r(x) is found using a GPR on the data set, (X,Xy), where Xy represents the standard deviation
of the Y -values [5].
Additionally, provided that the derivatives of the kernel can be calculated, the derivatives of

the fit can also be predicted directly from the data using the following equations [6]:

) _ 9K(X,,X)

V= —— KX, X) +RX,X)] 'Y
PK(X1.Xes) R(Xu1,Xs) OK(XeX) LIK(X.X)
2 *, 1y Ak, *, 1y Ak, . %9 1 9 A
VT X, 0Xia 9X. 10X, ox, | KXX)+RX.X) =2

It should be noted that a numerical approximation of the derivative suffices if an analytical form
of the kernel derivatives do not exist but this comes with a cost in computation time, depending
on the accuracy of the numerical method used.

Within the GPR framework, the free weight parameters are replaced with the hyperparame-
ters of the chosen kernel, denoted as a set using 6. The optimal value for these hyperparameters

can be obtained by maximizing the log-marginal-likelihood, given as follows [4]:

1 1
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where n is the number of data points to be fit. By maximizing this value, the chosen model
is the most probable match to the given data points but offers no insight into how well the
model corresponds to the underlying physics. Note that this is only one way of optimizing the
hyperparameters and that other methods provide models that have different relations to the data.

In the case of profile fitting, X represents the radial coordinate taken from the magnetic equi-
librium calculated by EFIT and Y represents the corresponding measured value. The program
first tries fitting using the rational quadratic (RQ) kernel, which can be expressed as follows [4]:

k(') = o2 <1+ <’“‘x’)2> )
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where the hyperparameters are given by 0 = {o, a,l}. This kernel enforces smoothness when

the [-hyperparameter is sufficiently large. However, it was noticed that this kernel consistently
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fails to model the plasma pedestal when it is present. Thus, when a large jump is detected within
p > 0.8, the Gibbs kernel with a Gaussian length-scale function is applied to the data instead.

This kernel can be expressed mathematically as such [4]:

, 2AUX) () \? x—x')? x—p)?

where the hyperparameters are given by 6 = {o,l,/1, 1, 0;}. This kernel acts similarly to the
RQ kernel, except with a localized variability in the correlation lengths defined by /(x). The
Gaussian shape of the /-function effectively allows the fit to vary significantly in a localized
region around U, specifically chosen to be near the pedestal in this application. Samples of the
output from this profile fitting procedure are shown in Figure 1.

Using this tool, the profiles from a selection of ~ 12000 time windows over 2000 JET dis-
charges have been extracted, from which gyrokinetic input parameters can be sampled. Figure 2
provides some insight into the parameter space covered by the preliminary profile database. The
unusually high density of points near the zeroes of the axes, shown in Figure 2, along with the
extremal outliers indicate that the automated GPR fitting procedure still experiences some fail-
ures particularly in the ramp-up and ramp-down phases. However, it can be seen that the tool is
robust enough to handle the majority of JET discharges.

Overall, an autonomous tool was successfully developed to extract data from the JET PPF
system and apply the Gaussian process regression procedure to measurement data in order to
determine the kinetic profiles and their derivatives. The capability to do this on-demand at rela-
tively low computational cost in unprecedented. However, the statistical rigour of the derivative
errors must still be formalized. In parallel to this, the workflow of generating gyrokinetic sim-
ulation inputs from the profile database is under development. This is intended to facilitate the
execution of a large number of simulations on high-performance computing clusters, in order to
generate the required training set for the neural network. The final neural network model will be

integrated into the RAPTOR fast tokamak simulator [7] for validation with experimental data.
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Figure 1: Profiles for JET #70274. Upper left: Electron (green line) and ion (red line) densities
with experimental data (black points), showing good fitting of pedestal shoulder for use as the
boundary condition for core transport modelling, n; estimated using Zg. Upper right: Normal-
ized electron, ion, and main impurity (blue) density gradient lengths. Lower left: Electron and
ion temperatures with experimental data. Lower right: Normalized electron and ion temperature

gradient lengths.
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Figure 2: Left: Normalized electron temperature gradient length against normalized electron
density gradient length at three different radial positions (red, green, blue) and during ramp-
up (RU - squares), flat-top (FT — circles), and ramp-down (RD — diamonds) phases. Right:
Normalized ion temperature gradient length against normalized electron temperature gradient
length at three different radial positions (red, green, blue) and during ramp-up (RU — squares)

and flat-top (FT — circles) phases.



