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Introduction Three-dimensional tokamak and stellarator equilibria are in the focus of
present fusion research. While stellarators are characterized by a complex 3D magnetic field
topology, 3D tokamaks are devices with weakly broken axisymmetry. Reasons for the asym-
metry of tokamak configurations are e.g. three-dimensional resistive wall structures, which can
reduce the growth rates of external modes, and magnetic perturbation fields. The latter are ap-
plied to mitigate, or even to suppress edge localized modes (ELMs). The design of 3D fusion
devices, as well as the analysis and interpretation of the corresponding plasma discharges, re-
quire appropriate numerical tools that are able to handle their geometry. The newly developed,
linear stability CASTOR3D code [1] is such a tool. In the following, we present stability stud-
ies for a 3D tokamak and a quasi-axisymmetric stellarator configuration, which demonstrate the
large variety of its possible applications.

CASTOR3D code The CASTOR3D code is a hybrid of the linear stability CASTOR_3DW
code [2] and the resistive wall mode STARWALL code [3]. Its general 3D formulation allows to
use various kinds of flux coordinates (s, v, u) (s = py,, radial, v toroidal, and u poloidal direction).
There is no limitation to ideal wall structures or resistive time scales, because the extended
eigenvalue problem simultaneously describes the plasma perturbation and the corresponding
currents in the external conducting structures. Depending on the complexity of the conducting
structures, they are either discretized by a spectral method, or by triangular finite elements. The
resistivity in each triangle may be different.

Several code extentions and improvements have been made in comparison to the preceding

code version described in Ref. [1]. In addition to the plasma resistivity the current code version

1

includes parallel ion viscosity, —A 7 & AV, and plasma flow, Vo= o

Q(s)7,,, with v being
the direction of the (quasi)-symmetry (toroidal direction in cylindrical coordinates for toka-
maks, and toroidal direction in Boozer coordinates for quasi-axisymmetric stellarators). The
code has been fully MPI parallelized, and the non-hermitian eigenvalue problem is solved using
the parallelized SLEPc-Krylov-Schur solver [4].

Stability studies First, we consider a 3D AUG-type equilibrium with an advanced g-profile

(two g = 2 surfaces). Eight upper and eight lower magnetic perturbation (MP) coils located at

the inner side of the PSLs (Passive Stabilization Loops) produce an n, = 1 perturbation field
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which causes a one-periodic corrugation, dy, of the flux surfaces as shown in Fig. 1.

The 3D and the corresponding axisymmetric equilib-

rium (MP coils off) are unstable with respect to a ver-

tical instability and coupled tearing modes. Figure 2

shows the vertical instability of the 3D equilibrium
(left), and an n = 1-type double tearing mode (right).
The growth rates of these modes as functions of the

specific wall resistivity, 7,,, and the toroidal rotation

frequency, €, are depicted in Fig. 3.
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Figure 1: Contour plot of dy on
the plasma surface
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Figure 2: (left) Mode structure of the vertical instability. (right) Real part of the eigenfunction Fourier
spectrum of the radial velocity in NEMEC coordinates [1] for an = 1 double tearing mode (DTM). The
solid and dashed lines mark the contributions of the complex and conjugate-complex eigenfunctions,

respectively. The largest contributions are marked by their poloidal and toroidal harmonics, m/n.
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Figure 3: (left) Growth rate as function of the specific wall resistivity, 10,,. The vertical red line marks the
specific resistivity of the PSLs installed in AUG. (right) Growth rates as function of the rotation frequency

Qq (rotation profile: Q(s) = Qo(1 —0.75%).
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Although, the corrugation is relatively small around the ¢ = 2-surfaces (|y|max ~ 0.7 cm) at

least four n-harmonics couple together as shown in Fig.2 (right). In contrast to the axisymmetric
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equilibrium the eigenvalues of the two existing orthogonal solutions are no longer degenerated.
In Fig. 2 the complex and conjugate-complex Fourier harmonics of the n = 1 DTM have oppo-
site signs, and the eigenvalue amounts to y = 2241 1/s. Not shown is the case with y = 2228 1/s
(equal signs of the harmonics). However, only one eigenvalue exists for the vertical instability
because of its n = 0 character. While the PSLs have a stabilizing effect on the vertical mode, a
differential rotation of the plasma reduces the growth rates of the n = 1, and n = 2-type DTMs
(see Fig. 3). Due to the solution of an extendend eigenvalue problem, the CASTOR3D code
handles the huge variation (five orders of magnitude) of the growth rate of the vertical instabil-
ity, which reaches from the no wall limit to the resistive wall mode (RWM) time scale. In Fig. 3
the two eigenvalues of one mode type obtained for the 3D equilibrium are marked by squares
and solid lines, respectively. Since the corrugation of the considered AUG-type equilibrium is
small, these eigenvalues are almost the same. However, the eigenvalues of the axisymmetric and

the 3D equilibria vary within 5-15%.

Next, we consider a two-period, quasi-axisym-
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at the plasma boundary. Figure 4 shows the contour
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of the magnetic field strengh, B, on the plasma sur-
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face. It is B(s,v,u) ~ B(s,u) with v and u being the

Figure 4: Contour plot of B on
the plasma surface.
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toroidal and poloidal angles in Boozer coordinates.
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This two-periodic stellarator configuration is unstable with respect to ideal, external kink

modes of the odd (n = 1,3,5,...), and even (n = 0,2,4,...) mode families as shown in Fig. 5.
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Figure 5: Real part of the eigenfunction Fourier spectrum of the radial velocity of a sine-type mode struc-
ture of the even mode family (left), and a cosine-type mode structure of the odd mode family (right). The
solid and dashed lines denote the contributions of the complex and conjugate-complex eigenfunctions,
respectively. The largest contributions are marked by their poloidal and toroidal harmonics, m/n.

Due to the stellarator symmetry of this quasi-axisymmetric configuration, the two eigenvalues
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of a mode-type belong to a sine- and a cosine-type eigenfunction, respectively. That is, the
harmonics of the complex and conjugate-complex harmonics are equal, but with opposite sign
in case of the sine-type eigenfunction (see Fig. 5). Taking into account 6 n-harmonics and 13

m-harmonics per n, the solutions yielded several
eigenvalues for each mode family. Figure 6 shows
the growth rates as function of the parallel viscos-
ity coefficient, |, for some modes of the odd mode

10
family. The parallel viscosity has a stabilizing ef-
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fect on these modes. However, the effect on the

odd eigenfunction ———-

n = 1 mode type with even eigenfunction seems to even eigenfunction

be largest. Here, the mode type of the most unsta-
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thermore, effects of plasma resistivity, plasma flow, Figure 6: Growth rates as function of

| for modes of the odd mode family.

ble mode changes with increasing viscosity. Fur-

and resistive wall structures on the stability proper-
ties of stellarators can be studied in detail with the CASTOR3D code.

Summary and outlook Numerous modifications and extensions of the CASTOR_3DW and
STARWALL code parts led to a synergistic effect. The possible applications of the CASTOR3D
code exceed easily the possibilities of both of them. The code has a number of significant
advantages. It allows: (i) to choose between various kinds of flux coordinates, (ii) to perform
ideal and resistive stability studies for 3D equilibria, (ii1) to take plasma inertia and resistive
walls simultaneously into account, (iv) to study the effects of plasma rotation and viscosity
on the stability properties, (v) to investigate vertical instabilities, and (vi) to deal with coils
and multiply-connected wall structures. The MPI parallelization of the code allows an efficient
solution of large eigenvalue problems. The implementation of diamagnetic drift and anisotropic
heat conductivity terms is in progress.

Acknowledgements This work has been carried out within the framework of the EUROfu-
sion Consortium and has received funding from the Euratom research and training programme
2014-2018 under grant agreement number 633053. The views and opinions expressed herein do

not necessarily reflect those of the European Commission.

References
[1] E. Strumberger and S. Giinter, Nuclear Fusion 57 016032 (2017)
[2] E. Strumberger et al., 38th EPS Conf. on Plasma Phys. (Strasbourg, France) vol 35G, (ECA) P5.082 (2011)
[3] P. Merkel and E. Strumberger (2015) http://arxiv.org/abs/1508.04911
[4] J.E. Romin et al., SLEPc Users Manual, Technical Report DSIC-11/24/02, Universidad Politecnica de Valen-
cia (2018), http://slepc.upv.es/documentation/slepc.pdf



