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Quiescent H-mode (QH-mode) is a naturally ELM-stable high performance operation mode
which has been obtained in DIII-D, ASDEX Upgrade, JET, and JT-60U [1 and references
within]. The additional transport to maintain constant density and radiation is provided by
the benign coherent edge harmonic oscillations mode (EHO) [2] which is thought to be a
kink/peeling mode [3]. A new QH-mode regime with enhanced pedestal has been discovered
in DIII-D at reactor-relevant low torque and collisionality [4]. The regime was originally
found in conventional QH-mode when the counter-Ip neutral beam torque drops to ~2Nm in
double null plasma shapes. It is referred to as ‘wide-pedestal QH-mode’ because the pedestal
width exceeds the EPED kinetic ballooning mode (KBM) limit [5]. Across the transition
from QH to wide-pedestal QH, the pedestal electron pressure generally increases by 60% and
widens by 50% and the plasma confinement (ITER Hyogy,) rises by 40%. The onset of
broadband edge MHD modes and micro-turbulence accompanied with a lower ExB shear in
this region is a common feature of the wide-pedestal QH, instead of EHO. It is conjectured
that the increased transport provided by these edge modes reduces the pedestal gradients
resulting in a higher pedestal while still remaining below the ELM-limit. Since its discovery,
several experiments have been conducted in DIII-D to explore its operational space with
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sustained over even broader range from 4.1Nm-ctr to 1.9Nm-co (Fig. 1). Note that there were
no 3D magnetic fields applied in these experiments except that for error field correction
(EFC). The operating torque range for wide-pedestal QH exceeds the scaled DIII-D torque
range that is equivalent to the anticipated torque range in ITER using the scaling in Ref. 6.
If wide-pedestal QH-mode is to be used in future devices, we need also to demonstrate
zero torque startup. Wide-pedestal QH with net zero torque throughout the whole discharge
has been attained on DIII-D [7]. As illustrated in Fig. 2(#174658, red), the initial formation
phase has only net-0.04Nm co-NBI while the sustainment phase has only net-0.06Nm ctr-
NBI. Note results presented in this paper all have plasma current and toroidal magnetic field
in the same direction (clockwise). The small finite non-zero torque resulted from the
uncertainty associated with the beam output even though it was commanded to net zero
torque. These discharges are stationary for more than 20tg (limited only by NBI duration)
with reactor-relevant plasma conditions (Bx=1.75, Hogy»=1.25, v ,.¢=0.3-0.4) in DN shape.
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the edge of plasma remains ctr-rotating even at zero Figure 2: Time trace of (a) NBI power,

. (b) and (c) NBI torque, (d) Da signal, (e)
NBI torque. The good wall condition (low H98y2, (f) Bx, pedestal electron (g)
pressure and (h) width, (i) pedestal
rotation velocity, (j) c-coil current in
wide-pedestal QH discharges: #163518
(black) accessed with torque ramp

contribute to the success of access wide-pedestal QH- down and #174658 (red) with zero
torque start-up

collisionality), good EFC, and excellent edge stability
limit from high shaping (high triangularity) also

mode with zero torque.
The wide-pedestal QH-mode was originally discovered in balanced double null (DN)

shape, with dRsep~0 (dRsep is the radial distance between the flux surfaces connected to the
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upper and lower x-point at the outer midplane). The same torque ramp experiments
conducted in upper single null (USN) shape with dRsep ~ +2cm resulted in loss of coherent
EHO and occurrences of ELMs at low torque [8]. New experiments have been carried out to
explore the operating space in terms of plasma shape, especially towards more ITER-relevant
lower single null (LSN) shape. Wide-pedestal transition has now been seen in a range of
plasma shapes including USN, DN and LSN, in terms of dRsep, ranging from -1.5cm to
+1.6cm. Furthermore, the wide-pedestal QH-mode has been sustained in a wider range of
dRsep, from -3.4cm (LSN) to +1.6cm (USN) as illustrated in Fig. 1. For the LSN shape with
dRsep= -3.4cm, the average triangularity Oayg is ~0.44 similar to the ITER target Oayg.

No power limit was observed in the conventional QH-mode with coherent EHO such
that the plasma remains ELM-stable until the input power reaches the core beta limit [2].
Previously, ELMs were observed in those discovery experiments of wide-pedestal QH-mode
when the input power was increased by ~35% [4]. No ELM occurs in the new experiments
with higher power but lower density than those original discovery experiments. This suggests
that the return of ELMs in those previous experiments might be associated with the higher
density rather than the higher power, similar to the conventional QH-mode where the pedestal
pressure increases with density and ELMs appear at high density. New NBI power scan
experiments at moderate density are conducted and the stationary wide-pedestal QH-mode is
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low torque thus we also start to investigate the compatibility of wide-pedestal QH with ECH
injection. In contrast to most H-mode and conventional QH-mode on DIII-D where
confinement generally degrades with ECH, additional confinement improvements in both
core and pedestal with ECH injection have been observed in some wide-pedestal QH-mode
discharges. An example is shown in Fig. 3 where IMW ECH is injected into the core
(deposited around p~0.25) of a wide-pedestal QH-mode (#169387) which has 4AMW NBI
power. Both the pedestal pressure and global confinement factor (Hosy,) grow higher
compared to early in the discharge or a similar discharge (#169372) without ECH injection.
The pressure increase is mostly from the temperature raise which is seen in both electron and
ion channels. The discharge remains ELM-stable and has little change in rotation with ECH
injection. Increased ExB shear just inside the pedestal combining with core profile stiffness
is thought to improve confinement with ECH.

The role of edge magnetic and density fluctuations in forming the wide pedestal is being
studied. The broadband MHD is composed of two counter-propagating low-k branches [8]
while the intermediate-k density turbulence propagates in the electron-direction (lab frame)
and oscillates periodically [9]. A flat spot is observed in the pedestal profiles of wide-pedestal
QH-mode, especially that of the electron temperature. The location of the flat spot is close to
the location of the peaking of the amplitudes of some of these edge modes (Fig. 4). Linear

and non-linear simulations are carried out to investigate these modes.
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and toroidal magnetic field in opposite directions.



