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Particle stochastic transport and acceleration are fundamental phenomena in the universe. In

particular, turbulent magnetic fields exist at all scales and determine complex transport pro-

cesses of the cosmic rays. The essential role is played by themagnetic field line trajectories,

which represent a constraint on particle motion. Particle transport is completely determined by

the field line random walk (FLRW) at small energies when particles are tied to the magnetic

lines. Particle collisions, the intrinsic drift determined by curvature or gradient ofB, or finite

Larmor radius effects determine particle departure from the field lines and modify the transport.

However, the FLRW remains the fundamental process for understanding particle transport.

We present here a study of the FLRW in the frame of the 2-dimensional model that consists

of a magnetic field

B(x,z) = B0+b(x,z), (1)

whereB0 = B0ez is the mean field andb(x,z) is a stochastic magnetic field that is perpendicular

onB0. The stochastic component depends on both the perpendicularx≡ (x1,x2) and the parallel

coordinates. Usually,B0 is constant. This is a simplification because there is space variation of

B0. The model is extended here by introducing large scale gradients ofB0 with characteristic

lengths that are large compared to the correlation distances of the stochastic component. We

also consider a small average componentB0y = B0yey perpendicular onB0. The main magnetic

field is modeled by

B0 = B0exp

(

x1

Lx
+

z
Lz

)

ez +B0yey. (2)

We use the perpendicular correlation lengthλ⊥ as unit of the distances in all direction and of

Lx, Ly andλz, the parallel correlation length ofb(x,z).

The condition∇ ·B(x,z) = 0 imposes an average field in the perpendicular plane in orderto

compensate the parallel gradient ofB0. The 2-dimensional stochastic fieldb is determined from

a scalar functiona(x,z), the magnetic potential, asb(x,z) = ∇⊥× a(x,z)ez, where∇⊥ is the

gradient in the(x1,x2) plane anda(x,z) is assumed to be a homogeneous Gaussian field, with

zero average and the Eulerian correlation (EC) :

E(x,z)≡ 〈a(0,0)a(x,z)〉= A2exp

(
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)

. (3)
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Here 〈...〉 is the average over the realizations of the stochastic potential a andA is its mean

square value. The dimensionless equations for the magneticfield lines are

dx1

dz
= R exp

(

−
x1

Lx
−

z
Lz

)

∂a(x,z)
∂x2

−
x1

Lz
, (4)

dx2

dz
= R exp

(

−
x1

Lx
−

z
Lz

)(

−
∂a(x,z)

∂x1
+Bm

)

−
x2

Lz
, (5)

whereR = A/(B0λ⊥) is the ratio of the amplitude of the stochastic magnetic fieldand ofB0 and

Bm = B0yλ⊥/A. The last terms appear due to thez-dependence ofB0 and they ensure the zero

divergence condition of the total magnetic field. The divergence "velocity" in Eq. (4) is not zero

in the presence of the gradients (finiteLx and/orLz).

The aim of present study is to determine the effects of the gradients of the mean field (2) on

FLRW.

We use the decorrelation trajectory method (DTM, [1], [2]) for determining the statistics of

the magnetic field lines described by Eq. (4). This a semi-analytical approach based on the

decorrelation trajectories (DTs), which are determined from the EC of the stochastic potential.

The method was used for FLRW in the case of a constant mean magnetic field B0ez [3], [4].

The method is able to describe both the random and the quasi-coherent components of the field

lines and to analyze the nonlinear affects in the FLRW.

We have shown that the nonlinear FLRW that correspond to large magnetic Kubo numbers

Km = Rλz/λ⊥ is characterized by the trapping of the magnetic lines, which generates quasi-

coherent structures and decreases the diffusion. Trappingis due to the Hamiltonian structure the

magnetic field line equations. The magnetic potential is conserved whenλz, Km → ∞, and the

magnetic lines wind on the contour lines ofa(x). The diffusion coefficients are zero in this limit

and the process is subdiffusive. A weak variation of the magnetic filed alongz transforms trap-

ping into a local process and the FLRW becomes diffusive due to the fraction of the magnetic

lines that are not trapped. Trapping determines solenoidalsegments of the magnetic lines, which

are uniformly distributed on each field line and are separated by segments that perform much

larger displacements. The trapped magnetic field lines formlocalized quasi-coherent structures,

which are similar to the magnetic islands since they consists of magnetic line winding around

some local axis. These stochastic magnetic islands have thelengthL of the order ofλz and an

average transversal sizeρ that is an increasing function ofKm.

The DTM is able to describe FLRW in the presence of trapping due to the main ingredient of

this theory, which is the set of DT’s. The equations for thesetrajectories have the same structure

as the equations for each field line. The invariants and the topology of the real field lines are

thus represented by the DT’s, which show the characteristics of the decorrelation process.
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In the present case, the equations for the DT’sX(z) are

dX1

dz
= R exp

(

−
X1

Lx
−

z
Lz

)

∂AS(X exp(−z/Lz) ,z)
∂X2

, (6)

dX2

dz
= R exp

(

−
X1

Lx
−

z
Lz

)(

−
∂AS(X exp(−z/Lz) ,z)

∂X1
+Bm

)

,

whereAS(x,z) is the average potential in subensembles S of the realizations of the stochastic

functions that have given values of the potentiala(x,z) and of the magnetic fieldb(z,z) in the

pointx = 0, z = 0, which is taken as the "initial" condition for the field lines

a(0,0) = a0, b(0,0) = b0. (7)

It is obtained using conditional averages as a function of the EC [1], [3]

AS(x,z)≡ 〈A(x,z)〉S = a0E(x,z)−b0
1

∂E(x,z)
∂x1

+b0
2

∂E(x,z)
∂x2

. (8)

The Lagrangian statistical averages are obtained using theDTs and their probabilitiesP(b0,a0)

of having b0,a0 at x = 0 andz = 0. For instance, the running (z−dependent) diffusion coeffi-

cients are

Di(z) = R
∫∫

da0db0P(b0,a0)b0
i XS

i (z). (9)
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Figure 1: Effects of the main field gradients on FLRW forBm = 0: the running diffusion coeffi-

cients (left panel) and the flow velocity (right panel).

The effects of the gradients can be deduced from the typical results presented in the Figures 1

and 2 forBm = 0 andBm = 0.2, respectively. The black lines correspond to the basic modelwith

constant main fieldB0 (CaseA with Lx →∞, Lz →∞), the blue curves are forB0(x) (Caseb with

Lx = 20, Lz → ∞), the magenta lines forB0(z) (CaseC with Lx → ∞, Lz = 20) and the red lines

for B0(x,z) (CaseD with Lx = 20, Lz = 20). The other parameters areR = 1 andλz/λ⊥ = 10,

which corresponds toKm = 10 (nonlinear regime).
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Figure 2: Same as in Figure 1, but forBm = 0.2

One can see in Figure 1 (left panel) that the running diffusion coefficientsD1(z) = D2(z) are

the same for the cases (A, B) and (C, D), which demonstrates that a small gradient alongx1

does not influence the diffusion of the field lines. On the contrary, the presence of the parallel

gradient (in the casesC, D) determines a significant increase of the diffusion.

Magnetic line flow (an average "velocity"V1) is generated by the perpendicular gradient

of B0, as seen in Figure 1 (right panel), whereV1 is represented as function of the parallel

correlation length. The sign ofV1 is negative in the quasilinear regime (that corresponds to

λz/λ⊥ < 1 in the figure) and positive (along the gradient) in the nonlinear turbulence. The

parallel gradient determines the decrease ofV1.

The average magnetic fieldBmey makes the FLRW anisotropic by strongly increasing the

diffusion coefficient along its direction and decreasing the perpendicular diffusion (Figure 2,

left panel). The influence of the parallel gradient ofB0 on the diffusion process persists, but

with opposite effect: bothD1 andD2 are decreased. The flow of the magnetic field lines is still

present (Figure 2, right panel), but with smallerV1 and with a much stronger decay due to the

parallel gradient ofB0. A synergistic effect of the gradients and of the average magnetic field

Bm appears.

In conclusion, the parallel and the perpendicular gradients of the mean magnetic field have

different effects on the FLRW in the nonlinear regime: significant modifications of the diffusion

and, respectively, generation of magnetic line flows.
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