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Abstract

A set of equations is derived that describes the transport of particles and energy in a ther-

monuclear plasma on the energy confinement timescale. The equations thus derived allow to

study collisional and turbulent transport self-consistently retaining the effect of magnetic field

geometry without assuming any scale separation between fluctuations and the reference state. In

a previous article [1], transport equations holding on the reference state lengthscale have been

derived using the moment approach introduced in [2]. Furthermore it has been shown how this

approach is not suitable for the description of smaller length-scales. In this work, this analysis

is extended to micro- and meso-scales adopting the framework of phase space zonal structure

theory [3, 9]. Previous results are recovered in the long wavelength limit and, in the general

case, transport equations in the phase space for particles and energy are obtained that correctly

take into account meso-scale structures.

Introduction

Describing the evolution of macroscopic plasma profiles on long time scales requires to treat,

on the same footing, transport induced by Coulomb collisions and by turbulent fluctuations. A

first principle approach is recommended and several theories have been proposed, see e.g. Ref.

[4]. Following this framework, in a previous article [1], we have derived a set of equations gov-

erning particle and energy transport on the energy confinement time using standard first order

gyrokinetic theory. The result is consistent with Ref. [4] and the relevant transport equations

reduce to the ones found in that work if we introduce appropriate spatiotemporal averages con-

sistently with the separation of scales between plasma reference state and fluctuating quantities

assumed therein. The derivation of a transport theory that does not rely on this assumption,

allowing, thus, to describe profile corrugations on the spatiotemporal scales self-consistently

generated by the plasma, is the scope of this work.

Fundamental equations

In this work we study transport processes in strongly magnetized plasmas and, therefore,

for each species, the particle distribution function can be written as the sum of a reference
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distribution function F0 and a small perturbation δ f , where the characteristic (macroscopic)

lengthscale of variation of F0, i.e. L, is such that δ f/F ∼ ρ/L ∼ δ � 1 and ρ is the Larmor

radius. We further assume the so-called drift ordering, i.e. cE/B0vth ∼ O(δ ), where vth is the

particle thermal speed, and other symbols are standard. Electromagnetic fields are written as

the sum of reference fields, self-consistently determined within the reference state varying on

the equilibrium lengthscale L, and of fluctuations. We assume axisymmetry of the reference

state and, therefore, without loss of generality, the reference magnetic field can be written as

BBB0 = F∇∇∇φ +∇∇∇φ ×∇∇∇ψ . Following Ref. [5], we adopt the gyrokinetic ordering for fluctuating

quantities, i.e. |∂t |/|Ω| ∼ |δB/B0| ∼∇∇∇‖/∇∇∇⊥∼ kkk‖/kkk⊥∼O(δ ), where Ω is the particle cyclotron

frequency in the reference state magnetic field. Consistently with the scope of this work, we

formally define the leading order plasma response to zonal structures, i.e. the component of the

distribution function undamped by collisionless processes, see e.g. Ref. [3, 9], in term of its

adiabatic and non-adiabatic components: δ fz = e−ρρρ·∇∇∇δ Ḡz +
e
mδφ0,0

∂ F̄0
∂E where E = v2/2 is the

energy per unit mass, µ is the magnetic moment adiabatic invariant µ = v2
⊥/(2B0) and the 0,0

subscript to δφ , i.e. the electrostatic potential, denotes the m = n = 0 component with m and n

being respectively the poloidal and toroidal mode numbers of the fluctuation. We also assume

that the equilibrium guiding center distribution is isotropic, that ∂µ F̄0 = 0, and that the usual

low-β tokamak ordering applies. The (leading order) non-adiabatic gyrocenter plasma response

to zonal structures δ Ḡz, is obtained solving the first order nonlinear gyrokinetic equation [5, 6]:

(
∂t + v‖∇‖+ vvvd ·∇∇∇

)
δ Ḡz =−

e
m

∂ F̄0

∂E

∂

∂ t

〈
δψgc

〉
z−

c
B0

bbb×∇∇∇
〈
δψgc

〉
·∇∇∇δ Ḡ

∣∣∣∣
z
, (1)

where: 〈
δψgc

〉
z = Î0

(
δφ0,0−

v‖
c

δA‖0,0
)
+

m
e

µ Î1δB‖0,0, (2)

the last term of Eq. (1) is composed only by the product of fluctuations with opposite toroidal

mode number, În(x)≡ (2/x)nJn(x) [7], Jn(x) are the Bessel functions, λ 2 ≡ 2(µB0/Ω2)k2
⊥ and

the definition of În acting on a generic function g(rrr) =
∫

dkkkĝ(kkk)exp(ikkk · rrr) is the following

Îng(rrr)≡
∫

dkkkeikkk·rrr În(λ )ĝ(kkk). This equation states that zonal structures are driven by zonal fields,

i.e. fields with n = m = 0, and by nonlinear coupling between the gyro-center response and the

perpendicular gradient of the fluctuating fields that generate terms with the same property.

Transport equations

Up to the leading order in δ , the linear part of the particle free streaming operator can be

written, see Ref. [8], as:

∂t + v‖∇‖+ v‖∇‖

(
Fv‖
Ω

)
∂

∂ψ
. (3)
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We introduce the (drift/banana center) response δ ḡz, such that δ Ḡz = e−iQzδ ḡz, and impose:

i∇‖Qz = i∇‖

(
Fv‖
Ω

)
kz

dψ/dr
; (4)

where kz ≡ (−i∂r) in order to simplify the nonlinear gyrokinetic equation. Integrating Eq. (4)

we obtain the following expression:

Qz = F(ψ)

[
v‖
Ω
−
(v‖

Ω

)] kz

dψ/dr
, (5)

where we have introduced the “bounce” average along unperturbed particle orbits: [. . .] ≡

τ
−1
b
∮

d`/v‖ [. . .] and τb is the time required for particles to complete an (integrable) close

poloidal orbit in the reference magnetic field. We can therefore rewrite Eq. (1) as(
∂t + v‖∇‖

)
δ ḡz = eiQz

(
− e

m
∂ F̄0

∂E

∂

∂ t

〈
δψgc

〉
z−

c
B0

bbb×∇∇∇
〈
δψgc

〉
·∇∇∇δ Ḡ

)
. (6)

The requirement for the phase space zonal structure to be long lived, i.e. that it annihilates

the linear part of the free streaming operator, imposes that ∇‖δ ḡz = 0. The pullback operator

Qz does not depend on the φ coordinate and, therefore, we obtain that δ ḡz must be toroidally

symmetric and characterized by m = 0. Therefore the equation governing the evolution of δ ḡz

is:

∂tδ ḡz =

[
eiQz

(
− e

m
∂ F̄0

∂E

∂

∂ t

〈
δψgc

〉
z−

c
B0

bbb×∇∇∇
〈
δψgc

〉
·∇∇∇δ Ḡ

)]
. (7)

It can be shown that the following expression holds for any velocity function:

〈〈 f 〉v〉ψ =
4π2

V ′ ∑
v‖/|v‖|=±

∫
dµdE τb fn=0 (8)

where we have indicated the flux surface average with 〈. . .〉ψ , and the integral in the velocity

space with 〈. . .〉v. This result shows that the flux surface average of a velocity integral depends

only on the bounce averaged response of the n = 0 toroidal Fourier harmonic at the leading

order in the asymptotic expansion. In the presence of fluctuations in the gyro-center particle

distribution, the drift/banana-center non-adiabatic particle response yields the following form

of the phase space zonal structure [3, 9]:

〈δ fz〉=
(
e−iQz Î0

)
δ ḡz +

e
m

δφ0,0
∂ F̄0

∂E
. (9)

Acting on this expression by ∂t , substituting Eq. (7) and integrating in velocity space (see Ref.

[8] for the detailed calculation) we obtain:

∂t 〈〈δ fz〉v〉ψ =
e
m

∂tδφ0,0

〈[
1−
(

e−iQz Î0

)(
eiQz Î0

)] ∂ F̄0

∂E

〉
v

− 1
V ′

∂

∂ψ

〈〈
V ′
(

e−iQz Î0

)[
ceiQzR2∇∇∇φ ·∇∇∇

〈
δψgc

〉
δ Ḡ
]〉

v

〉
ψ

. (10)
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This is the gyrokinetic extension of Eq. (15) in Ref. [1], and is valid for corrugations of the

reference state characterized by a lengthscale up to the particle Larmor radius, provided that the

well-known gyrokinetic ordering is preserved. As anticipated above, collisional transport is sup-

pressed here but could be readily restored; e.g., by adopting a suitable gyro-averaged collision

operator [10]. The third term on the RHS is the long time scale effect (not related to collisionless

processes) of turbulent transport. Mesoscales in the density profile are spontaneously produced

by this term. Taking the long wavelength limit of this expression, i.e.
(
eiQz Î0

)
→ 1, we recover

the transport equations discussed in Ref. [8]. The expression for the energy transport is obtained

with the same procedure, which yields heat fluxes that are weighted by mv2/2.

Conclusions

In this work, we have derived transport equations valid on the energy confinement time scale

adopting the framework of phase spaces zonal structures theory [3, 9]. The governing equations

allow to describe multiple spatiotemporal scales generated by turbulent mode-mode couplings

eventually invalidating the hypothesis of scale separation between reference state and fluctua-

tions, see e.g. Ref. [4]. Furthermore, we have shown that the relevant transport equations in the

long wavelength limit produce fluctuation induced fluxes consistent with Ref. [1]. These results

allow to extend the concept of plasma reference state to self-consistently include spatiotemporal

meso-scales produced by phase space zonal structures [11].
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