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Banana kinetic equation and plasma transport in tokamaks
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In the core of fusion grade tokamak plasmas, where v, = qu/ (8 ¥ 2Vt) is much less
than unity, banana kinetics becomes important for modes with wavelengths comparable to
or shorter than the width of bananas, and with frequency w lower than the gyro-frequency
Q= eB/ (Mc) and the bounce frequency of bananas [1-3]. Here, v is the typical collision
frequency, R is the major radius, g is the safety factor, ¢ is the inverse aspect ratio, v, =
W is the thermal speed, T is the temperature, e is the charge, ¢ is the speed of light, B

is the magnetic field strength, and M is the mass. Because the width of the gyro-orbits p is
assumed to be much less than the wavelengths of the modes, gyro-kinetics is neglected and

the drift kinetic equation is used for the banana kinetics.

To treat banana Kinetics, we choose ( Dr ,0,G6,.E, u,t) as independent variables [1-3].
Here, p, is the toroidal component of the canonical momentum, 6 is the poloidal angle, &,
=¢q0 - Cis the field line label, C is the toroidal angle, E is the particle energy per unit mass,
and w is the magnetic moment per unit mass. We employ Hamada coordinates [4], in which
the equilibrium magnetic field is expressed as B, = ' VV xVO- ¥ VV x VC, where y'=
B,*VC, x and y are respectively the poloidal and toroidal flux divided by 27, , ¥=
B, * V0, and prime denotes d/dV . The covariant representation for B, is B, = GVO + F
VC + Vg, where F = F ( X)’ and G( X) are the poloidal current outside, and the toroidal

current inside a magnetic surface multiplied by ¢/2, respectively. The function ¢ satisfies
the equation B, * V= B; - <B§ > [5], where angular brackets denote flux surface average.
We choose the electrostatic and vector potentials to represent perturbed
electromagnetic fields. For the electrostatic potential ¢ , ¢ = ¢, + ¢ = ¢0(V) +
Elmn B T yhere ¢y(V) is the equilibrium potential, ¢, is the perturbed

potential, ¢,,, is the Fourier amplitude, k, is the radial wave vector in terms of X, and

imn

(l,m,n) are respectively the radial, poloidal, and toroidal mode numbers. For w < w,=
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Vt\/; / Rq , the bounce frequency of bananas, it is convenient to use §,, and ¢ becomes ¢

= 9y(V) + X, 9,(0)" " Because ¢, is real. ¢, = ¢.,_,.,. and ¢,,(6) = ¢,_,(6).

where the superscript * indicates the complex conjugate. Similarly, the perturbed vector

t(m@ -ng)+ilk,, x —iot
Imn )

potential A 1is expressed either as A = A or as A =

Imn

El A, (0)e™*™*7 The A and its Fourier amplitudes are decomposed as A = A, n, + A,

where ny= B,/IByl, and the subscripts |l and L indicate the components parallel and

perpendicular to By, respectively. Also,A,, = A and A, (0) = A", (0).

Imn -l-m-n °

We derive the banana kinetic equation using the following orderings. We adopt k0
< 1, where k is the magnitude of the wave vector perpendicular to B,. For maximum
ordering, we choose k, p,RB,~ 1, with p,, the poloidal gyro-radius, and B, , the
equilibrium poloidal magnetic field strength. We still assume that p, < L, with L, the
equilibrium radial gradient scale length.

Following the procedure in [1-3], orbit averaging the drift kinetic equation when w,

is the dominant frequency yields the banana kinetic equation

Yo vty e _e AN Loy T
E < VC0>(,b Fa <(M a Me vin o )>0b &E+<p§>"b op. = <C(fo)>0b’ (1
where f, = f, (pg G E .t ) = -V,nx V(V”/Q) [V” /(BQ)](VXB) (V”/Q)nx (&n/&t)

is the drift velocity, n = (B,+B,)/B, B=VxA, p.= - Fv,/Q-VVxVO*A_ p. =

(V“/Q[ (V” 2/9)/&C0+&B A)/C7C0] the orbit averaging operator is (‘)(}b =

[EO 0 "doB(e /(|V”|X)]/(2f:,[lz dBB/(|V,,|X’)),EG is a sum over g, 0Ois the sign of the

parallel particle speed v,, and 6,; and 6,, are two turning points at which v, = 0. The 6
integrals in (‘)(}b are performed holding (pg,Q,,E,u,t) constant. Fast bounce motion of
bananas smoothens out the 0 variation in f,. Because w/gpp / L < 1, the difference between
p: and V on the equilibrium quantities is neglected. Ordering w~w,= <V . VCO>0b~v >

W, .2 reduced banana kinetic equation is obtained, i.e.,

o . % e dp e . 0A % . oo
"o TV VG, JC, ()= <(M a M )>b JE Ape)., ARG

where f, =N (11:3/ 2V3) e MET=<0/T) i5 a Maxwellian distribution, and N is density. Equation

(2) 1s used to calculate the fluxes in all the low collisionality regimes as outlined in the
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theory for neoclassical toroidal plasma viscosity [6]. The explicit expression for the right

side of Eq.(2) is
e dp e JA af, ) of,
- (__‘_VH"' ) (), o
M dgt Mc ot)l,, JE XV

! ' A 5 T” i +ng-owt
= Cj‘_M 2 in|:_2%+£+%+(x2 ) ] <¢ln V” Allln> e(lkxpé? " )’ (3)
X Ln 2 T ¢ ob

ncl p T

where p is plasma pressure, x = v/v,, and the consequences of the banana kinetics can be

found in the orbit averaged potentials

Vi
<¢zn - ?AII,In> (f dO——

|V|||X
Ik F Ik F ‘V ‘
|V| ¢ln( )COS TV v |\3||: \; A”,M(H)sin — 1 .4

It is obvious that bananas sample the perturbed fields along their trajectories. We emphasize
that the contribution of the vector potential to the banana kinetic equation remains finite

unless the width of bananas vanishes.
We solve Eq.(2) in the superbanana plateau regime caused by the drift resonance,
w-nw, =0. )
The ensemble averaged particle flux (I VV)en and heat flux <q . VV>M / T are, forj=1-3,

(LevvV) e W n\ wex ped) (m\T
(a> V), /1) g el VPSB! (n( ncr*?*7)*(n3 r|
and n, = 3 }dx(x2 -5/2) e (14 k2B, /B, - )] Inl(9 - viAfc),, 21

Ln X min

Z'f dO(B/Bm)[kf —(B/Bm —1)/(BM /B, —1)]_1/2 . The resonance function G (k) = A x

f ! \/k2 B/BB/(B); (/LM /B, -1) z(%_l)(kz _%)(%_(32)'/ (232)) '

B8 flor)

m

B/B,

0 Jk* -(B/B, -1)/(B,, /B, -1)

4
q <Bz>’

plasma pressure, and B,, and B, are respectively the maximum and minimum values of B

./ E.,E.= Vv’/2 is the kinetic energy of the particle per unit mass, P is total
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along the banana bouncing trajectories [7]. The trapping state is characterized by the pitch
angle parameter k* = (1 —A)/ [A(BM /B, —1)]: for trapped particles, 1 =k°=0 and for

circulating particles, k> = 1. The resonance pitch angle k_ is the solution of the drift
resonance condition, i.e., Eq.(5), for a given energy. The lower limit of the energy integral
x,;, depends on the sign of G,(k); only those particles with the normalized energy larger

than X . can resonate. In the region G(k) > 0, X . =

min min
1/2
, and in the region Gyk) < 0, x_, =

[2ex/(Mevze!)(w/n -y ) Mar{ G, (0]}

12
. The Max and Min are defined respectively

[Zex/(Mcvfs’)](w/n - C(I)B/X){Min[ck (k)]}_l

as the maximum and minimum values of the argument.

The transport fluxes in Eq.(6) can be used to model transport behaviors of thermal
particles and energetic alpha particles in the presence of electrostatic turbulence, Alfvenic
waves, and chaotic magnetic fields when magnetic field correlation length L,, > Rg in
tokamaks. For electrostatic turbulence, we set A = 0, and banana kinetics is stabilizing or
improves confinement. For Alfvenic waves, it is the interference between the electrostatic

and vector potentials that determines if banana kinetics improves or degrades plasma
confinement. In chaotic magnetic fields, we set ¢, = 0 and @ = 0, and when kxppRBp\/z ~

1, drift resonance enhances transport losses over transit or bounce frequency resonance

induced losses, e.g., Rechester-Rosenbluth coefficient [8], by a factor of L/ p, > 1. The

banana kinetics can be used to selectively pump out undesirable species.
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