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Neoclassical tearing mode (NTM) [1] suppression or avoidance is important for successful
tokamak operation. One of the most promising NTM control techniques is to generate
microwaves at the electron cyclotron frequency to drive current inside the island, and replace
the missing bootstrap current that provides the island growth. This O-point EC current drive can
be applied to reduce the island width, and so mitigate the degradation of confinement in fusion
devices, such as ITER, and/or suppress the NTM. To calculate how much current is required for
the NTM stabilisation, we need to develop further the NTM threshold physics. According to the
modified Rutherford equation (MRE) [2], the time evolution of the island width w is described
by (TR / rf)dw/ dt=A+ J. 0], dx with 7, being the resistive diffusion time, and r; denoting
the position of the rational surface. The first term on the right represents the free energy
available in the equilibrium current density, while the second term comes from the localised

layer current density perturbation parallel to the magnetic field. The main contribution to &, is

the sum of the bootstrap, polarisation and curvature currents. For islands wider than the ion

banana orbit width p,,, these MRE contributions are well described by the conventional
neoclassical theory. However, the NTM stability threshold is near W ~ p,; , where the existing

theory is no longer valid. In our current work, we focus on the bootstrap and polarisation
contributions to the island evolution, considering small magnetic islands W compared to the
tokamak minor radius r, but allow p,; ~W to extend the existing theory.

To find the electron and ion responses to the magnetic and corresponding electrostatic

perturbations, we start with a drift-kinetic equation of the following form: V|V f; +V; -Vf, +

Vb-zfj—(er/mjV)[\/”V”d)+Vb-Y<D]6fj/6V:C(fj) . Here V, is the component of
velocity in the direction along the magnetic field lines, V,=Vb , b=B/B .
Ve =[BxV®]/B* and Vb:—VHxY(V”/a)cj) are the ExB and total magnetic drifts,
respectively; o, =eZ;B/m; is the Larmor frequency with eZ; and m; being the particle

charge and mass. @ is the electrostatic potential, which we split into the equilibrium radial
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E-field, —®',,, and the perturbed part, i.e. ® =®', X+ ¢, where x is the distance from the

egqm >
rational surface denoted by x =y —w, =0. Here we assume that the main effect of the NTM
magnetic perturbation on plasma parameters is localised to the island vicinity. The electrostatic
potential is to be determined self-consistently from the plasma quasi-neutrality condition. C,

represents a model form of the electron/ion momentum-conserving collision operator, which is

given by Eqg. (62) in [3]. Working in the island rest frame, we seek the time-independent
electron/ion distribution function f,_,; of the form f, :[1—erCI)/Tj (0)] f"(0)+g, . f"
is a non-shifted Maxwellian distribution, evaluated at the resonant surface, while g; is the
perturbed part of the particle distribution that responds to the NTM island. Treating the system
perturbatively, we expand g; in the small ratio of island width to tokamak minor radius,
A=w/y, . Applying an orbit-averaging procedure (denoted below by angle brackets) and

introducing the toroidal canonical momentum instead of the poloidal magnetic flux as a radial
coordinate enables us to reduce the dimension of the problem to 4D. Then we derive the

streamlines, S, along which the distribution function is constant in the absence of collisions

and write an equation for the leading order distribution function, ggo), as
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function that corresponds to the passing and trapped regions, respectively. Here we have

introduced dimensionless variables: p,; =1V, /(a)q. -w) with 'V, :(ZTJ. /mj)ll2 being the

~

electron/ion thermal velocity, V, =V, /V;, , V =V IV, , W=w/y, , L'=(ys/0q)oq/oy ,
Ly =(ws /B)oB /oy and d=ez,®/T(0). p, is %—p,V, with % being the poloidal flux
function centered around the rational surface and normalised to the island half-width. @, is the
magnetic drift frequency. f, , poloidal angle 9 (which is averaged over in the above equation)
and helical angle £ form an initial set of spatial variables. To describe velocity space, we use

the pitch angle 4, the absolute value of velocity V and o =V, / ‘V”‘ . In addition, we have taken

op, / 0y =1 to leading order and have assumed that the fastest p, variation is in & and ggo).
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Thus, g becomes a function of {S,£,4,V;o}. The S function is used to represent the

streamlines for the passing and trapped ions and electrons. In the absence of ®, constant S
contours in the (y, &) plane map out “drift” islands, which are identical to the real magnetic
island structure, but shifted in the radial direction by an amount of a few poloidal Larmor radii
(and slightly modified in the presence of the self-consistent @ ). This radial shift appears as
Py, inthe S definition and hence the o = +1 shift is equal but opposite to the o = -1 shift.
If collisions are neglected, the combined effect of parallel flow, VB and curvature drifts would
force the particle distribution function to be flattened on these constant S “drift” islands.
Introducing collisions at next order determines the full form of the perturbed distribution

function. Applying a perturbative approach for collisions (v, / ew <<1,v; and @ are collision

and island propagation frequencies, respectively; & is the inverse aspect ratio), we obtain

09\°9s v, 10&=0 to Oth order. g°” is then g§°’°>(s(pq),g,z,v,a),z,v;a) and is

J
obtained from the solvability constraint when we proceed to next order, introducing collisions.

An annihilation operator introduced to eliminate the term in gﬁo'l) allows us to consider

separately the regions inside and outside these S islands.

25 we=2.7289py; —1.914% - 4

0.75 0.015
2.0+

0.50 £0.010

0.25 0.005

1.04

= n(0)/Negm

0.00 0.002 0‘204 0.006
8

D¢or/Bas, a. u.

& 0.5
g —0.25

nin,
L

0.0 4 * * L ]

-0.50

-0.75 ~051

-1.00

—U.b?s —0.050 -0.025 0.000 07625 0.050 0.075 0.00 0.05 0.10 0.15 0.20 0.25 0.30
W wirs

Fig. 1. Radial ion density profile for small p, /w=0.08
(blue curve) and large p, /w=0.65 (red curve) across the

island O-point. The density flattening is almost complete for
small p, /w but is replaced by a substantial gradient for

pg I W~1. ng, isthe equilibrium density, i.e. in the absence
of the NTM island.

Fig. 2. The total parallel current contribution to the island
time evolution A, , normalised to g, , vs. w for different

Py values: (.00, 1.35, 1.75, 3.00, 5.00, 7.00) -107°r, . The
subplot shows w;, as a function of p, .

As can be seen from the definitions of S and @, , the total ion/electron perturbed distribution is a

superposition of two drift island branches. One drift island is located in the V, >0 region, while

the other is equal but shifted in the opposite direction, i.e. V, <0. The real magnetic island is

localised between them. As the regions of distribution profile flattening are in opposite directions
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for o =+1, summation over o provides a substantial gradient inside the NTM island when w ~

Pq - For pg [ w<<1,the density profile is flattened inside the magnetic island, as the radial shift
is kept relatively small. These results are shown in Fig.1 and are referred to as finite orbit width
effects. For the electrons, this radial shift ~ p,, / w is a factor (m, / m, )1’2 smaller than for the

ions, and the rapid electron parallel flow always tends to flatten their radial profile across the
magnetic island. However, as the plasma is quasi-neutral, an electrostatic potential forms to
ensure the same gradient is supported by the electrons. It has been confirmed that our solution for
the potential converges and satisfies the quasi-neutrality condition. To calculate the neoclassical

current contribution to the NTM, we project the cosine component of Ampere’s law integrated

across the island, which is written as [dy ¢ j, cos&dé = A, p,W* / 3, [3] and in general can be
R

interpreted as an equation for A, =A, +A, [2]. A, as a function of w is shown in Fig.2 for

tot tot

different values of p, . In the limit of large island widths, A, decreases with w as a power

tot
function. This functional behaviour for larger w is expected from existing analytical approaches
[3, 4]. In contrast, for small w the neoclassical current contribution to the MRE is reduced as the

radial shift of the S islands, estimated as p, / w, becomes significant for small island widths.

The fact that A, becomes negative for the smallest islands, w<w,_, corresponds to the NTM

tot

magnetic island self-healing [5]. Tokamak experimental data supports a stabilising effect for w<

or ~ p,; [6]. Defining the critical island size w, as a root of A, (w)=0 and plotting w, against
P4 » We find an approximation w, = 2.73p, , which is equivalent to 8.63p,; for £ =0.1. A

marginal island width proportional to p,, has been observed on NSTX and DIlI-D [6].

In summary, these new results extend the existing neoclassical theory of tearing modes and are
important for constructing the NTM control modules for ITER and next generation power plants.
A better understanding of the ion polarisation current contribution requires knowledge of the
island propagation frequency and hence a more detailed treatment of the dissipation layer, and

will be the subject of further investigation.
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