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Neoclassical tearing mode (NTM) [1] suppression or avoidance is important for successful 

tokamak operation. One of the most promising NTM control techniques is to generate 

microwaves at the electron cyclotron frequency to drive current inside the island, and replace 

the missing bootstrap current that provides the island growth. This O-point EC current drive can 

be applied to reduce the island width, and so mitigate the degradation of confinement in fusion 

devices, such as ITER, and/or suppress the NTM. To calculate how much current is required for 

the NTM stabilisation, we need to develop further the NTM threshold physics. According to the 

modified Rutherford equation (MRE) [2], the time evolution of the island width w  is described 

by  2/ / 'R sr dw dt j d     x  with R  being the resistive diffusion time, and sr  denoting 

the position of the rational surface. The first term on the right represents the free energy 

available in the equilibrium current density, while the second term comes from the localised 

layer current density perturbation parallel to the magnetic field. The main contribution to j  is 

the sum of the bootstrap, polarisation and curvature currents. For islands wider than the ion 

banana orbit width bi , these MRE contributions are well described by the conventional 

neoclassical theory. However, the NTM stability threshold is near w bi , where the existing 

theory is no longer valid. In our current work, we focus on the bootstrap and polarisation 

contributions to the island evolution, considering small magnetic islands w  compared to the 

tokamak minor radius r , but allow bi  w  to extend the existing theory. 

To find the electron and ion responses to the magnetic and corresponding electrostatic 

perturbations, we start with a drift-kinetic equation of the following form: j E jV f f   V  

   / /b j j j b j jf eZ m V V f V C f         V V . Here V  is the component of 

velocity in the direction along the magnetic field lines, VV b , / Bb B . 

  2/E B V B  and  /b cjV   V V  are the E B and total magnetic drifts, 

respectively; /cj j jeZ B m   is the Larmor frequency with jeZ  and jm  being the particle 

charge and mass.   is the electrostatic potential, which we split into the equilibrium radial 
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E-field, 'eqm , and the perturbed part, i.e. 'eqm x     , where x  is the distance from the 

rational surface denoted by 0Sx     . Here we assume that the main effect of the NTM 

magnetic perturbation on plasma parameters is localised to the island vicinity. The electrostatic 

potential is to be determined self-consistently from the plasma quasi-neutrality condition. 
jC  

represents a model form of the electron/ion momentum-conserving collision operator, which is 

given by Eq. (62) in [3]. Working in the island rest frame, we seek the time-independent 

electron/ion distribution function ,j e if   of the form    1 / 0 0M

j j j j jf eZ T f g       . M

jf  

is a non-shifted Maxwellian distribution, evaluated at the resonant surface, while jg  is the 

perturbed part of the particle distribution that responds to the NTM island. Treating the system 

perturbatively, we expand jg  in the small ratio of island width to tokamak minor radius,  

/ Sw   . Applying an orbit-averaging procedure (denoted below by angle brackets) and 

introducing the toroidal canonical momentum instead of the poloidal magnetic flux as a radial 

coordinate enables us to reduce the dimension of the problem to 4D. Then we derive the 

streamlines, S , along which the distribution function is constant in the absence of collisions 

and write an equation for the leading order distribution function, 
 0

,jg  as 
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. ,p t  is the Heaviside 

function that corresponds to the passing and trapped regions, respectively. Here we have 

introduced dimensionless variables:  ˆ /j Tj cjI V w     with  
1/2

2 /Tj j jV T m  being the 

electron/ion thermal velocity, ˆ / TjV V V , ˆ / TjV V V , ˆ / Sw w  ,  1ˆ / /q SL q q     , 

 1 / /B SL B B      and  ˆ / 0j jeZ T   . p̂  is ˆˆˆ
jx V  with x̂  being the poloidal flux 

function centered around the rational surface and normalised to the island half-width. D  is the 

magnetic drift frequency. p̂ , poloidal angle   (which is averaged over in the above equation) 

and helical angle   form an initial set of spatial variables. To describe velocity space, we use 

the pitch angle  , the absolute value of velocity V  and /V V  . In addition, we have taken 

/ 1p    to leading order and have assumed that the fastest p  variation is in   and 
 0

.jg  
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Thus, 
 0

jg  becomes a function of  , , , ;S V   . The S  function is used to represent the 

streamlines for the passing and trapped ions and electrons. In the absence of  , constant S  

contours in the  ,   plane map out “drift” islands, which are identical to the real magnetic 

island structure, but shifted in the radial direction by an amount of a few poloidal Larmor radii 

(and slightly modified in the presence of the self-consistent  ). This radial shift appears as 

D   in the S  definition and hence the 1    shift is equal but opposite to the 1    shift. 

If collisions are neglected, the combined effect of parallel flow, B  and curvature drifts would 

force the particle distribution function to be flattened on these constant S  “drift” islands. 

Introducing collisions at next order determines the full form of the perturbed distribution 

function. Applying a perturbative approach for collisions ( / 1j   , j  and   are collision 

and island propagation frequencies, respectively;   is the inverse aspect ratio), we obtain 

 0,0

, , , , / 0j S Vg        to 0th order.  0,0

jg  is then 
    0,0

, , , , , , ;jg S p V V       and is 

obtained from the solvability constraint when we proceed to next order, introducing collisions. 

An annihilation operator introduced to eliminate the term in  0,1

jg  allows us to consider 

separately the regions inside and outside these S  islands. 

 

Fig. 1. Radial ion density profile for small / 0.08i w   

(blue curve) and large / 0.65i w   (red curve) across the 

island O-point. The density flattening is almost complete for 

small /i w  but is replaced by a substantial gradient for 

/i w  1. eqmn  is the equilibrium density, i.e. in the absence 

of the NTM island. 

 

 

Fig. 2. The total parallel current contribution to the island 

time evolution tot , normalised to  , vs. w  for different 

i  values: (1.00, 1.35, 1.75, 3.00, 5.00, 7.00) 
310 Sr

 . The 

subplot shows cw  as a function of 
i . 

As can be seen from the definitions of S  and D , the total ion/electron perturbed distribution is a 

superposition of two drift island branches. One drift island is located in the 0V   region, while 

the other is equal but shifted in the opposite direction, i.e. 0V  . The real magnetic island is 

localised between them. As the regions of distribution profile flattening are in opposite directions 
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for 1   , summation over   provides a substantial gradient inside the NTM island when w 

i . For / 1i w  , the density profile is flattened inside the magnetic island, as the radial shift 

is kept relatively small. These results are shown in Fig.1 and are referred to as finite orbit width 

effects. For the electrons, this radial shift  /e w  is a factor  
1/2

/e im m  smaller than for the 

ions, and the rapid electron parallel flow always tends to flatten their radial profile across the 

magnetic island. However, as the plasma is quasi-neutral, an electrostatic potential forms to 

ensure the same gradient is supported by the electrons. It has been confirmed that our solution for 

the potential converges and satisfies the quasi-neutrality condition. To calculate the neoclassical 

current contribution to the NTM, we project the cosine component of Ampere’s law integrated 

across the island, which is written as 2cos /tot id j d w         [3] and in general can be 

interpreted as an equation for tot bs pol      [2]. tot  as a function of w  is shown in Fig.2 for 

different values of i . In the limit of large island widths, tot  decreases with w  as a power 

function. This functional behaviour for larger w  is expected from existing analytical approaches 

[3, 4]. In contrast, for small w  the neoclassical current contribution to the MRE is reduced as the 

radial shift of the S  islands, estimated as /i w , becomes significant for small island widths. 

The fact that tot  becomes negative for the smallest islands, cw w , corresponds to the NTM 

magnetic island self-healing [5]. Tokamak experimental data supports a stabilising effect for w  

or  bi  [6]. Defining the critical island size cw  as a root of   0tot w   and plotting cw  against 

i , we find an approximation 2.73c iw  , which is equivalent to 8.63 bi  for 0.1  . A 

marginal island width proportional to bi  has been observed on NSTX and DIII-D [6].  

In summary, these new results extend the existing neoclassical theory of tearing modes and are 

important for constructing the NTM control modules for ITER and next generation power plants. 

A better understanding of the ion polarisation current contribution requires knowledge of the 

island propagation frequency and hence a more detailed treatment of the dissipation layer, and 

will be the subject of further investigation.  
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