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We reported in IAEA 2016 [1] that a rotating 3D field with magnitude comparable to pre-
existing error field has a very unique advantage for optimizing tokamak concept for practical
reactors. The rotating field can avoid tearing mode locking, achieve H-mode reocovery and
sustain the H-mode edge while simultaneously preserving high core confinement
configuration. A recent simulation study with a non-linear Reduced MHD code “AEOLUS-
IT” [2,3] has proposed the possibility of “shielding-out” resonant error field by rotating 3D

field.
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tearing mode structure, but the rotating 3D field couples tearing structure as a shielding layer.

The condition is called as “partial-shielding” or “partial-penetration” depeding upon the

emphasis. A critical parameter is the magnitude of the
rotating 3D field relative to the error field. The
simulation is with a cylindrical non-linear reduced
MHD code and a single-helicity assumption.
Nonetheless, as shown later, DIII-D experiments in a
toroidal geometry support the hypothesis by taking
into account that multiple poloidal Fourier mode
components exist due to the toroidicity and shaping.
Here, we discuss the simulation results with the DIII-D
experiments of partial penetration and another example
with feedback operation.

The Partial / Full 3D field penetration

The experimental study has been carried out in DIII-D
with rotating 3D field magnitude slightly less than a
critical value for full penetration [Fig.1]. A similar
observation in ohmic plasma was reported in ref. [5].
The plasma condition studied was the ITER baseline-
scenario development target with q95=3.2-3.8. With
less than a critical amplitude of rotating 3D field from
the I-coil and a frequency of 75Hz (slightly above the
wall resistive frequency of ~50Hz). The I-coil current
was increased by 30% in the middle of the discharge to
observe mode structure shift from partial-penetration
to full-penetration. The observed mode structure in
partial  peentration shows “standing-wave-like”
response along the toroidal direction and in full
penetration period the magnetic structure propagates
[Fig. 1(c)

the simulation [Fig.2 (a,b)] are in a good qualitative

and (d)]. The magnetic structures seen in

agreement with the experimental observation in both

regimes.
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Fig.2. the code simulation results for partial
and full- penetration.

(a) the perturbed magnetic dBr (normalized
to the poloidal magnetic field) for partial
penetration and (b) for full penetration. The
code simulation of dBr radial structure
behavior over one cycle are shown (c¢) for
partial penetration and (d) for full
penetration, where the solid lines show the
first one half cycle and dotted lines are the

following one half cycle.
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Fig. 3: Radial profiles of rotation and Ti
perturbation in partial and full penetration,
plotted vs. safety factor q. The traces cover
two cycles of 3D field rotation. (a) toroidal
rotation, (b) the perturbed toroidal rotation
and (c) normalized perturbed component of
carbon Ti profile for partial penetration
period; and (d), (e) and (f) are for full
penetration.(#170569)
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The radial location of observed mode response

is shown in Fig. 3 by three quantities; the
toroidal rotation €2 tor, perturbed rotation
0Q _tor, and normalized ion temperature

perturbation OTi/<Ti>. In partial siekding (or
penetration) regime, the mode structure 1is

similar to the simulation result, but the location

is shifted radially to =3, not at q~2 as predicted
[Fig.2 (c)]. It is noteworthy that the mode analysis
at early time with fast TM rotation (several kHz)
showed a typical TM mode character with
dominantly rotating m/n=2/1. A weak response
was observed inside of q < 3, suggesting that
lower-m components of error field were
weakened by shielding at the rational surface or

the mode response amplification factor was

reduced [Fig. 3(b,c)]. In the full penetration

period the perturbation remained peaked
strongly around q~3 and moderate amplitude
became noticeable around q~2[Fig.3(e,f)]. The
electron density and temperature profile showed
typical H-mode edge steady gradient near the
plasma edge (not in

shown) the partial

penetration period.

Possible shielding during feedback-controlled

3D field application.

The example in Fig. 4 is during tearing mode

locking avoidance feedback-control operation [6].

Here,
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Fig. 5. The perturbed ion temperature time

evolution at various radii: (a) g-profile, (b)

normalized perturbed ion temperature at

t=2900ms(#161243)
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amplitude and phase (indirectly frequency) to the least-stable resonant magnetic perturbation

(RMP) response, regardless to poloidal m-number of the mode. As seen in the high-field side

(HFS) off-mid plane magnetic sensor [Fig. 4(b)] and also discussed later with Fig. 5, an RMP

amplitude was initially built up near the edge outside p > 0.9 (@ > 4) while the response near
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q~2- 4 (internal 8Ti/<Ti>) was very minimal [Fig.4 (e)]. Approximately 100 ms later, the
RMP amplitude near the edge collapsed and an inner mode grew around p ~0.9 (q~ 3-4). The
radial shift sequence of mode appearance and disappearance is observable by the 8Ti/<Ti>
radial dependence as shown in Fig. 5. The edge activity seen by the magnetic sensor off-mid
plane is also visible around p = 0.95 -1, although the 8Ti/<Ti> decay at t=2800 ms does not
seem so sharp as seen by the probe signal, partly due to low spatial resolution [Fig. 4.(a)].
When the initial edge activity abruptly decayed away, a second mode around q~4 quickly
grew with inner domain around q=3-4. Then, at about t=2950 ms, a third mode (likely 2/1)
was excited sharply with the fast growth rate of 20-30 ms around q~2. The growth in the outer
domain g~ edge to 4 is marginal, but, the amplitude in the core becomes larger, leading to a
mini-collapse at about t=3000 ms. After recovery from the mini-collapse, the resurgence of
mode activity around q~2 (2/1 mode) was coherently coupled to the mode around q>4 leading
to the major collapse. The appearance/disappearance of the outer activity in time coincides
with disappearance/ appearance of inner RMP. This flip-flop type mode change can be
interpreted as the decrease of ‘“shielding out” of resonant error field in the outer domain
resulting in the amplification of inner RMPs. The shielding layer, excited near the edge (p >
0.9 with g>4), can impact the tearing mode response over a broad radial area covering q=2-4.
In summary, The hypothesis of shielding out resonant error field by rotating external
3D field is qualitatively consistent with DIII-D observations and useful for better
understanding of the process of the simultaneous achievement of H-mode recovery and the
sustainment of High core confinement.
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