
Initial Results of a Machine Learning-based Real Time Disruption Predictor

on DIII-D

C. Rea1, K. Erickson2, R.S. Granetz1, R. Johnson3, N. Eidietis3, K. Montes1, R.A. Tinguely1

1 MIT Plasma Science and Fusion Center, Cambridge, MA, US
2 Princeton Plasma Physics Laboratory, Princeton, NJ, US

3 General Atomics, San Diego, CA, US

A disruption prediction algorithm, named DPRF (Disruption Prediction using Random Forests),

has recently been implemented to run in real time in the DIII-D plasma control system (PCS). DPRF

is developed on the basis of the Machine Learning Random Forests (RF) algorithm and using an

extensive database of more than 10 000 DIII-D discharges, both disruptive and non-disruptive. The

algorithm uses 9 plasma parameters that are derived from several real time diagnostic signals and

real time EFIT equilibrium reconstructions. The list of used signals is provided in Table 1. DPRF is

trained on all types of major disruptions occurring during the flattop phase, without differentiation

by cause, and follows a binary classification scheme: the algorithm is trained to recognize time sam-

ples close to the disruption event (i.e. during the 350 ms preceding the disruption) and samples that

are non-disruptive or far from the disruption. We followed the assumption that discharges that even-

tually disrupt present a transition from a safe to a disruptive phase in the plasma parameter space.

Thanks to the RF white box features, DPRF provides probabilities associated to its predictions, i.e.

a disruptivity signal, now incorporated in the DIII-D PCS. RF also provides a way to interpret the

prediction results (e.g., which signals contributed to triggering an alarm). By identifying the causes

underlying the disruption events, a better understanding of disruption dynamics is achieved, and a

clear path toward the design of disruption avoidance strategies can be provided.

The database and Random Forest model. The application to the DIII-D PCS developed from an

extensive work dedicated to the construction of a database that collected a wide range of differ-

ent plasma parameters during several years of DIII-D experimental campaigns (from 2014 through

2017). Our choice of parameters to include in the database is based partly on our own tokamak opera-

tional experience, and partly on those specified in the relevant literature [1–4]. A detailed description

of the database construction can be found in Section 2 of [5,6]. With respect to [6], DPRF is trained

using a much larger set of data that comes mainly from the raw real time environment, given that

DPRF is intended to be a real-time disruption warning application. Therefore, we also sub-selected

from the database only a reduced number of parameters, available in real time to the PCS. These

are reported in Table 1. The details of the RF algorithm [7] have already been discussed in previous

papers [5, 6], to which we refer for a more detailed discussion of the algorithmic methodology and

all the derived implications.
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Variable name Importance∗ Signal description

n_equal_1_normalised 0.198
Bn=1

r perturbed radial field

of nonrotating modes, normalised to Btor

q95 0.184 Safety factor at the 95% flux surface, q95

n/nG 0.165 Greenwald density fraction, n/nG

ip_error_frac 0.111
Fractional error between measured and

programmed plasma current, (Ip − Iprog)/Ip

li 0.093 Normalised internal inductance, `i

betap 0.079 Poloidal beta, βp

Vloop 0.062 Loop voltage, Vloop [V]

Wmhd 0.061 Stored plasma energy, Wth [J]

Te_width_normalised 0.047
Electron temperature profile width,

normalised to plasma minor radius

Table 1: List of signals used for the development of DPRF on DIII-D PCS.
∗ The signals are ordered according to the values of their relative importance in the trained model. The

importance metric is a feature of tree-based models; for a detailed explanation, please refer to [5, 6].

Summarizing, the forests are developed by growing a large number of independent, de-correlated

decision trees, thus collecting a parallel set of predictions. The trees are usually fully grown: starting

from a root node, the decision paths are obtained through bootstrapped samples of the input features

(i.e., the plasma signals from Table 1) and develop branches that partition such features on the basis

of their real values (no feature scaling or normalization is actually required). The final prediction is

aggregated, using majority voting, from a large number of trees. DPRF is trained using a forest of 500

decision trees, and this number was chosen on the basis of the Out-Of-Bag error rate stabilization.

Tree-based models are attractive algorithms due to their accessible interpretability: using the Gini

impurity measure it is possible to obtain an estimate of the relative importance of the predictor

variables. The second column in Table 1 reports on the relative importance ranking extracted from

the training set used to develop DPRF.

Real Time Implementation. DPRF is trained using scikit-learn [8], the open-source Python

library, through the OMFIT framework [9]. To integrate DPRF in the real time DIII-D environment,

the trained forest was translated into C, the PCS-compatible language1. In Figure 2 we also show

the time traces of three of the most relevant input features: the Greenwald density fraction n/nG, the

safety factor q95, and the n_equal_1_normalised locked mode indicator.

1sklearn-porter, https://github.com/nok/sklearn-porter, D. Morawiec, unpublished.
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Figure 1: Example of a DIII-D non-disruptive discharge, shot

175490. The disruptivity level stays below 20% for the whole du-

ration of the flattop phase.

Figures 1 and 2 show two exam-

ples of discharges during which DPRF

ran its background calculations. The

disruptivity predictions are shown in

the second panels of both figures, to-

gether with the average computing

time for DPRF predictions (ranging

around 250-300 µs). It is interesting

to notice that, for this particular case,

the disruptivity signal increases above

60% before the impending disruption

(represented by the dashed red vertical

line across the panels) with more than

150 ms warning time.

Figure 2: Example of a DIII-D disruptive discharge, shot 175552. The red dashed vertical line represents the

time of the disruption event. The disruptivity signal in the second panel rises from values of 10-20% to values

greater than 60% with more than 150 ms warning time. The green box highlights the last 250 ms before the

disruption: in Figure 3 we show the feature contributions to the predicted probabilities in that time frame.

Feature Contribution. It is possible to compute the final DPRF disruptivity in terms of the average

contribution of each feature2.
2treeinterpreter, https://github.com/andosa/treeinterpreter, A. Saabas, unpublished.
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Figure 3: Waterfall chart of feature contributions for shot

175552. The blue bar shows the average disruptivity in the con-

sidered time frame before the disruption occurrence, while posi-

tive contributions are represented by the green bars and negative

ones are shown in red. The information contained in the Forest’s

decision paths defines the feature contributions to the final dis-

ruptivity.

For the last 250 ms of shot 175552

(where the disruptivity signal is greater

than 60%), we report in Figure

3 the average contribution of each

feature to the predicted probabil-

ity, together with the final aver-

age disruptivity in that time win-

dow. n_equal_1_normalised, n/nG

and q95 provide the major contribu-

tions to the predicted probability of an

impending disruption.

Conclusions. DPRF has proved to be

very robust over almost four months

of operation: less than 6% of non-

disruptive discharges triggered a dis-

ruption alarm during the current flat-

top. The ML-based algorithm was also

successfully exploited during an ITER

baseline scenario DIII-D discharge to

change the plasma current ramp down

rate and actively avoid an impending

disruption on the basis of DPRF real-time disruptivity warning. By combining explainable decisions

with real-time accurate predictions, novel disruption avoidance strategies can be provided.
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