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A disruption prediction algorithm, named DPRF (Disruption Prediction using Random Forests),
has recently been implemented to run in real time in the DIII-D plasma control system (PCS). DPRF
is developed on the basis of the Machine Learning Random Forests (RF) algorithm and using an
extensive database of more than 10 000 DIII-D discharges, both disruptive and non-disruptive. The
algorithm uses 9 plasma parameters that are derived from several real time diagnostic signals and
real time EFIT equilibrium reconstructions. The list of used signals is provided in Table 1. DPRF is
trained on all types of major disruptions occurring during the flattop phase, without differentiation
by cause, and follows a binary classification scheme: the algorithm is trained to recognize time sam-
ples close to the disruption event (i.e. during the 350 ms preceding the disruption) and samples that
are non-disruptive or far from the disruption. We followed the assumption that discharges that even-
tually disrupt present a transition from a safe to a disruptive phase in the plasma parameter space.
Thanks to the RF white box features, DPRF provides probabilities associated to its predictions, i.e.
a disruptivity signal, now incorporated in the DIII-D PCS. RF also provides a way to interpret the
prediction results (e.g., which signals contributed to triggering an alarm). By identifying the causes
underlying the disruption events, a better understanding of disruption dynamics is achieved, and a
clear path toward the design of disruption avoidance strategies can be provided.

The database and Random Forest model. The application to the DIII-D PCS developed from an
extensive work dedicated to the construction of a database that collected a wide range of differ-
ent plasma parameters during several years of DIII-D experimental campaigns (from 2014 through
2017). Our choice of parameters to include in the database is based partly on our own tokamak opera-
tional experience, and partly on those specified in the relevant literature [1-4]. A detailed description
of the database construction can be found in Section 2 of [5,6]. With respect to [6], DPRF is trained
using a much larger set of data that comes mainly from the raw real time environment, given that
DPREF is intended to be a real-time disruption warning application. Therefore, we also sub-selected
from the database only a reduced number of parameters, available in real time to the PCS. These
are reported in Table 1. The details of the RF algorithm [7] have already been discussed in previous
papers [5, 6], to which we refer for a more detailed discussion of the algorithmic methodology and

all the derived implications.
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Variable name Importance* Signal description

B! perturbed radial field

n_equal_1_normalised 0.198
of nonrotating modes, normalised to By
q95 0.184 Safety factor at the 95% flux surface, gos
n/nG 0.165 Greenwald density fraction, n/ng
Fractional error between measured and
ip_error_frac 0.111
programmed plasma current, (1, — Iprog) /1,
li 0.093 Normalised internal inductance, ¥¢;

betap 0.079 Poloidal beta, 3,
Vloop 0.062 Loop voltage, Vjpop [V]
Wmhd 0.061 Stored plasma energy, W;;, [J]
Electron temperature profile width,

Te_width_normalised 0.047 ) ) '
normalised to plasma minor radius

Table 1: List of signals used for the development of DPRF on DIII-D PCS.
* The signals are ordered according to the values of their relative importance in the trained model. The

importance metric is a feature of tree-based models; for a detailed explanation, please refer to [5, 6].

Summarizing, the forests are developed by growing a large number of independent, de-correlated
decision trees, thus collecting a parallel set of predictions. The trees are usually fully grown: starting
from a root node, the decision paths are obtained through bootstrapped samples of the input features
(i.e., the plasma signals from Table 1) and develop branches that partition such features on the basis
of their real values (no feature scaling or normalization is actually required). The final prediction is
aggregated, using majority voting, from a large number of trees. DPRF is trained using a forest of 500
decision trees, and this number was chosen on the basis of the Out-Of-Bag error rate stabilization.
Tree-based models are attractive algorithms due to their accessible interpretability: using the Gini
impurity measure it is possible to obtain an estimate of the relative importance of the predictor
variables. The second column in Table 1 reports on the relative importance ranking extracted from
the training set used to develop DPRF.

Real Time Implementation. DPRF is trained using scikit-learn [8], the open-source Python
library, through the OMFIT framework [9]. To integrate DPRF in the real time DIII-D environment,
the trained forest was translated into C, the PCS-compatible language'. In Figure 2 we also show
the time traces of three of the most relevant input features: the Greenwald density fraction n/ng, the
safety factor ¢95, and the n_equal_1_normalised locked mode indicator.

Isklearn-porter, https://github.com/nok/sklearn-porter, D. Morawiec, unpublished.
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Figure 2: Example of a DIII-D disruptive discharge, shot 175552. The red dashed vertical line represents the
time of the disruption event. The disruptivity signal in the second panel rises from values of 10-20% to values
greater than 60% with more than 150 ms warning time. The green box highlights the last 250 ms before the

disruption: in Figure 3 we show the feature contributions to the predicted probabilities in that time frame.

Feature Contribution. It is possible to compute the final DPRF disruptivity in terms of the average
contribution of each feature.

2treeinterpreter, https://github.com/andosa/treeinterpreter, A. Saabas, unpublished.
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Conclusions. DPRF has proved to be
very robust over almost four months
of operation: less than 6% of non-
disruptive discharges triggered a dis-

Figure 3: Waterfall chart of feature contributions for shot
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disruption on the basis of DPRF real-time disruptivity warning. By combining explainable decisions

with real-time accurate predictions, novel disruption avoidance strategies can be provided.
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