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I. Introduction

Neoclassical Tearing Modes (NTM) impose a major concern in tokamaks as they can de-
crease confinement and lead to plasma termination. Energetic particle (EP) - NTM interaction
impacts neutral beam (NB) torque, heating and current drive (jng). This effect has been mim-
icked in transport codes by an ad-hoc beam diffusivity (x45) which broadens the NB profiles.
However, the EP response to NTMs depends on the location and width of wave-particle reso-
nances in phase space, whose description requires a physics based model. The TRANSP-"Kick"
reduced transport model' was developed for Alfvén Eigenmode (AE) driven EP transport, of-
fering a path toward studying NTM-EP interaction. We report the extension of this model to
include NTMs by integrating it with a new analysis tool of island structure determination? for
the first time. Initial tests with ITER baseline, hybrid and ITER steady state discharges in DIII-
D are encouraging as this model quantitatively predicts measured neutron rates (N,) without
free parameters. This model retains all TRANSP functionality and self-consistently predicts the
NTM impact on NB torque, jng and heating. EP transport is significant when phase space reso-
nances overlap, resulting in a transport threshold at W ~ 5cm full island width. This model also
shows that the effect on NB profiles strongly depends on the NTM mode numbers with the 3/2
(2/1) broadening (peaking) jnp near the plasma magnetic axis.
I1. Representation of NTMs in the "Kick''-model

The "Kick"-model uses the guiding center particle following code ORBIT?to calculate EP or-
bits in the perturbed magnetic field and construct the probability matrix p(E, P¢, up, AE, AP ) of
AE energy and AP, momentum changes in the E, P¢, ug (energy, canonical angular moment and
magnetic moment, respectively) phase space. Next, p is used in TRANSP’s NUBEAM module
to modify the EP distribution. NTMs are implemented through the ¥ =¥, (1) ¥ (y)¥ (& (¢)) flux

of a 3-dimensional helical current filament running along the O-line of the islands (y is the nor-
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malized poloidal flux surface label, & is the helical angle and ¢ is time).

Y (y) is the solution of Ampere’s law for a radial Gaussian

T, [keV] (ECE) and best fit magnefic flux surf
current sheet and W(&(¢)) = cos(§(t)) with &(z) = m6 — 200[ ) pest T meanete v sreces
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dynamics is prescribed entirely by these measurements. Figure 1: Determination of W(t).

II1. Test and validation of the ""Kick''-model

Trapped, co- and counter passing ions all strongly interact with the NTM as shown by the
energy transfer rate in Fig. 2. (a). This picture is qualitatively similar to AEs but the interaction

_ / i
AP—wAl/n A%At/ = =" which

with NTMs is stronger due to the larger W,. Resonances occur® where
give rise to island chains in the EP population with poloidal mode number m’, perturbing the
NB torque, heat and jNg (A¢ and At are integrals on closed orbits and / is any integer).

Initial TRANSP runs of ITER baseline, hybrid and steady state plasmas in DIII-D with the
"Kick"-matrix are encouraging with the model quantitatively predicting measured N,. The level
of transport varies by scenario and W with observed neutron deficits (AN,) up to 20% [Fig. 2.
(d)]. An example of N, (¢) is shown in Fig. 2. (b), where both the classical and the TRANSP-
"Kick" model match the measured N, before NTM onset. The difference between the data
and the classical TRANSP result after NTM onset indicates that the EP confinement decreases
which is quantitatively captured by the "Kick"-model. In this case AN, ~ 20% [Fig. 2. (c)]

when the magnetic amplitude is ~ 10G, and W ~ 10cm.
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Figure 2: (a) Energy transfer rate between EPs and a magnetic island. (b) Measured and TRANSP N, w
& w/o "Kick"-matrix, (c) AN, and NTM amplitude. (d) "Kick" vs measured AN, in a range of discharges.
(e) jns in TRANSP w & w/o "Kick"-matrix and in the 45 model. (f) Scaling of NB current vs W.

The ad-hoc y4p model predicts similar electron thermal diffusivity and fast ion (FI) losses
when N, are matched. However, the ion thermal diffusivity, core FI pressure, NB driven jnp
[Fig. 2. (e)] and torque are different. The y4p model is both quantitatively and qualitatively
incorrect. In the "Kick"-model, the island dominantly redistributes jng in the core as it pushes
EP away from the resonance, decreasing (increasing) jng near (outside) the resonance. In con-
trast, the y4p model simply reduces jng everywhere in the Y ~ 0 — 0.3 region. EP confinement
decreases only when phase space resonances overlap (islands overlap in real space) starting
around W = Scm [Fig. 2. (f)], turning the initially deterministic orbits into stochastic orbits.

Finally, we tested the effect of islands with different m/n in a set of runs in the same equilib-
rium [Fig. 3.]. Overlapping resonances of a W = 5cm 2/1 magnetic islands result in (i) a chaotic
region at ¥ > 0.4 and (ii) a large 1/1 island in the EP population at y = 0.2. (i) Reduces jnp in
the 0.5 < v < 0.8 region, while (ii) leads to a dip in jnp at the resonance as well as a peak in jNB
near the magnetic axis. A 3/2 NTM also forms overlapping islands in the y > 0.5 region. How-
ever, in contrast to the 2/1 NTM, the 3/2 NTM forms a 2/1 island in the EP population in the

¥ < 0.15 region which leads to a FI current perturbation djng that broadens jng near the axis.
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This djng may from a magnetic island destroying the 1.0
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We have extended the TRANSP-"Kick" model' to in-

clude NTM driven EP transport by integrating it with a

new analysis tool of island structure determination® for

the first time. Initial tests with ITER baseline, hybrid and - Wml
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Figure 3: Effect of (a) an m/n =2/1

as this model quantitatively predicts measured neutron ;
and (c) an m/n=3/2 NTM on (b) jns.

rates (N,) without free parameters. EP transport is signif-

icant when phase space resonances overlap, resulting in a

transport threshold at W ~ 5cm full island width. The effect on NB profiles strongly depends
on the NTM mode numbers with the 3/2 (2/1) broadening (peaking) jNg in the core.
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