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Fully simulating the impact of turbulence on the performance of fusion devices such as ITER
is challenging, especially when fusion plasmas exhibit highly disparate spatio-temporal scales.
Currently, there are single-scale models developed to study turbulence (gyrokinetic models) and
transport (large-scale simplified models) separately. To go beyond single-scale simulations, the
Computing Patterns for High Performance Multiscale Computing (ComPat) project [1] takes the
component based approach to construct multiscale simulations by connecting existing single-
scale models (submodels) together into a workflow. This approach has simpler algorithm and
codebase, therefore each submodel is easier to validate, verify, maintain and optimize. In ad-
dition, ComPat incorporates the concept of Multiscale Computing Patterns (MCP) [2] into its
framework, so that applications can run efficiently when one or several submodels require com-
puting capabilities at the petascale.

In order to couple these existing single-scale models together, a generic and non-intrusive
method was used to build a multiscale workflow. A data wrapper is implemented around a
submodel, which is a physics routine to handle the inputs and outputs in the form of consistent
physical objects CPOs. Around this data wrapper is the component layer that connects the wrap-
per to the multiscale coupling environment (e.g. Multiscale Coupling Library and Environment
MUSCLE2).

In this work, the ComPat framework is utilized to build a multiscale fusion application that

couples four major submodels enclosed in the component:
e TRANSP: a 1D transport model (ETS) that evolves temperature and other profiles in time

e EQUIL: a 2D fixed boundary equilibrium model (CHEASE) that updates geometrical

information
e TURB: a 3D gyrofluid turbulence model (GEM) to compute heat and particle fluxes

e F2DV: a module (IMP4DV) that converts fluxes coming from turbulence submodel into

transport coefficients compatible with transport submodels

Topology of such workflow is illustrated in FIG 1a, with each box represents a component of

the multiscale simulation. INIT is a component that imports initial data into the workflow. Dup
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Figure 1: (a) Serial workflow vs. (b) parallel workflow, with equilibrium (EQUIL) and turbu-

lence (TURB) components run in parallel.

is a generic duplication data mappers (a part of the MUSCLE?2 standard library) that scatters
data to several destinations.

Using the unified datastructure developed in EUROfusion and the MUSCLE?2, one can set up
a reliable multiscale fusion plasma simulation based on existing single scale codebases. A sig-
nificant advantage to such approach, is the ease with which individual submodel can be replaced
by another that offers similar functionality. However, there are major challenges arise to such
framework. Several of these challenges, including time bridging between turbulence and trans-
port models, defining quasi-steady state of core plasma, implementing global gyrokinetic code
into current simulation framework, and optimizing the overall simulation runtime are addressed
in Luk et. al. [3]. All the simulation results are based on initial conditions from an ASDEX
Upgrade experiment.

Luk et. al. demonstrate one way to optimize the overall simulation runtime. They intro-
duce a workflow configuration that allows the EQUIL component to run concurrently with the
TURB component. The topology of such parallel workflow is displayed in FIG 1b. A 4000-
time-iteration simulation of the parallel workflow is compared to the serial workflow (FIG 1a).
Both cases use 1024 cores on Cineca Marconi computing cluster, and the parallel workflow
shows an overall runtime improvement of 5.7%. It is beneficial to study in further detail on
the performance of such setup, in particular the runtime within each component of the parallel
workflow, in order to run an optimal setup of multiscale workflow. One of the major goals of this
project is to develop optimization schemes for every MCP to improve the overall performance
of the multiscale simulations. Methods such as smart scheduling and load balancing can lead
to improvement on simulation runtime, efficiency, and energy consumption on targeted execu-
tion platforms. For this work, the fusion application utilizes the extreme scaling MCP, in which
one submodel (primary model) takes up the majority of the computing resources while the rest

of the submodels (auxiliary models) do not require much computing resources. For this fusion
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application, the turbulence model is the primary model.

In ComPat project, the Arm MAP profiling tool [4] is available to measure multiscale simu-
lation performances. It can provide the runtime, time spent in the MUSCLE?2 operations, time
spent in MPI communications, and energy consumption of each component. This is very use-
ful when analyzing various workflow setup and finding optimal workflow configurations. To
demonstrate, the workflows in FIG 1 are tested on the the thin sized nodes of SuperMUC su-
percomputer located in Leibniz-Rechenzentrum (LRZ). There are 16 cores per node with hy-
perthreading technology. Each workflow is simulated under a set of resource counts: 128, 256,
512, 1024, and 2048 cores, and each simulation run completes 4 time iterations of the workflow.
These resource counts are equivalent to amount of resources needed for the primary model. The
runtimes are being compared for all components, and the results show that when the EQUIL
(CHEASE) and TURB (GEM) run in parallel, the runtime for EQUIL component improves by
0.3% on 256 cores to 3.8% on 1024 cores, to 39.8% on 2048 cores. Similar trend is observed
for the runtime on F2DV (IMP4DV) and TRANSP (ETS): 1% on 256 cores, 5-6% on 1024
cores, 38% on 2048 cores. As for the runtime for TURB, it improves by 1.1% on 256 cores,
7.9% on 1024 cores, and 12.9% on 2048 cores. The runtime comparison shows scalability to
the performance improvement by core count when running EQUIL and TURB concurrently.
However, there was no improvement on the performance when running on 128 and 512 cores,
as a matter of fact, the performance worsen by 30-40%. This may have to do with the way the
thin nodes run simulations on those core counts, and that is something to keep in mind in future
simulation runs.

While there is an improvement on performance (e.g. runtime) for two components (EQUIL
and TURB) running concurrently, the total number of cores for the simulation is equivalent to
the number of cores needed for TURB (GEM). Hence, it is interesting to study the performance
of the parallel workflow when more resources are allotted. In particular, the auxiliary models
(ETS and CHEASE) shall receive their own resource (e.g. 1 core for each). To do a quantitative
comparison, the set of runs with parallel workflow is conducted again. However, this time two
additional cores are added to the total core count (e.g. simulation on 128 cores becomes 130
cores), and each additional core is given to one auxiliary model. The performance measurements
on the parallel workflow, with and without the additional cores, are illustrated in FIG 2. There is
improvement on runtime (blue) for every kernel of the auxiliary models. While an improvement
of approximately 25-30% is observed for runs with two additional cores added to the 128-, 512-,
and 1024-core runs, we see approximately 1% improvement at 256 cores. On the contrary, two

additional cores results in longer runtime for 2048-core run. Again, this may have to do with
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Figure 2: Figure 2: Performance measurements, including runtime (blue), time spent in the
MUSCLE2 operations (orange), time spent in MPI communications (green), and energy con-
sumption (yellow) of the EQUIL and TURB components on parallel workflow with (left) and

without (right) two additional cores.

the characteristics of the SuperMUC thin nodes. As for time spent in MUSCLE2 operations
(orange) and energy consumption (yellow) in every component, they are qualitatively similar to
the observation for runtime. This information will be saved in a database, in order to give better

statistics when searching for optimal scenario for the application.
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