

Strong-flow gyrokinetic simulations with a unified treatment of all length scales

A.Y. Sharma¹, B.F. McMillan¹, J. Dominski²

¹ Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, UK

² Princeton Plasma Physics Laboratory, Princeton, US

Introduction

The gyrokinetic ordering parameter was originally[1]

$$\varepsilon \sim \omega \Omega^{-1} \sim k_{\parallel} \rho_t \sim \rho_t L_B^{-1} \sim q \phi T^{-1} \ll 1, k_{\perp} \rho_t \sim 1, \quad (1)$$

where ω is the characteristic fluctuation frequency, Ω is the gyrofrequency, k_{\parallel} is the characteristic fluctuation parallel wavenumber, ρ_t is the thermal gyroradius, L_B is the magnetic field length scale, q is the particle charge, ϕ is the electrostatic potential, T is the temperature and k_{\perp} is the characteristic fluctuation perpendicular wavenumber. Ordering (1) can be generalised[2] to give a weak-flow gyrokinetic ordering parameter,

$$\varepsilon \sim \omega \Omega^{-1} \sim k_{\parallel} \rho_t \sim \rho_t L_B^{-1} \sim u v_t^{-1} \ll 1, \quad (2)$$

where u is the $E \times B$ drift speed associated with ϕ and v_t is the thermal particle speed. Ordering (2) cannot be applied to all modern tokamak plasmas in general due to the presence of large flows. A further generalisation[3] gives a strong-flow gyrokinetic ordering,

$$\varepsilon \sim \omega \Omega^{-1} \sim k_{\parallel} \rho_t \sim \rho_t L_B^{-1} \sim u' \Omega^{-1} \ll 1, \quad (3)$$

where u' is the magnitude of the spatial derivatives of the $E \times B$ drift velocity associated with ϕ . Using Ordering (3), we present the discretisation of our manifestly conservative Vlasov-Poisson system that is obtained directly from our gyrocentre Lagrangian[4].

Lagrangian

Our gyrocentre Lagrangian for electrostatic potential perturbations in slab magnetic geometry up to first order is

$$\Gamma = [\mathbf{A}(\mathbf{R}) + v_{\parallel} \hat{\mathbf{b}} + \mathbf{u}] \cdot d\mathbf{R} + \mu d\theta - \left(\frac{1}{2} v_{\parallel}^2 + \mu B + \frac{1}{2} \mathbf{u}^2 + \langle \phi \rangle \right) dt, \quad (4)$$

where we use units such that $m = q = T = 1$, m is the particle mass, T is the temperature, q is the particle charge, \mathbf{A} is the magnetic vector potential, \mathbf{R} is the gyrocentre position, $\hat{\mathbf{b}}$ is the magnetic field unit vector, $\mathbf{u} = B^{-1} \hat{\mathbf{b}} \times \nabla \langle \phi \rangle$, $\langle \psi \rangle(\mathbf{R}, \mu, t) = (2\pi)^{-1} \int d\theta d^3 r \delta(\mathbf{R} + \boldsymbol{\rho} - \mathbf{r}) \psi(\mathbf{r}, t)$

for any function ψ , μ is the conserved magnetic moment, t is time, θ is the gyroangle, \mathbf{r} is the particle position and ρ is the gyroradius.

This Lagrangian (4) does not contain any $\mathcal{O}(\epsilon)$ terms, as these have all been Lie-transformed to higher order.

Vlasov-Poisson system

The Vlasov-Poisson system obtained from our Lagrangian (4) is then

$$\begin{aligned} F_{,t} + \dot{R}_i F_{,i} &= 0, \\ \dot{\mathbf{R}} &= \mathbf{u} + B_{\parallel}^{*-1} \hat{\mathbf{b}} \times \dot{\mathbf{u}}_1, \\ \dot{v}_{\parallel} &= 0, \\ 0 &= \int d^6Z \delta(\mathbf{R} + \rho - \mathbf{r}) [B_{\parallel}^* F + B^{-1} \hat{\mathbf{b}} \cdot \nabla \times F (\hat{\mathbf{b}} \times \dot{\mathbf{u}}_1)], \end{aligned} \quad (5)$$

where F is the distribution function that transforms as a scalar, $F_{,\theta} = 0$, $\Psi_{,\alpha} = \partial_{\alpha} \Psi$ for any quantity Ψ and any coordinate α , $i \in \{1, 2, 3\}$,

$$B_{\parallel}^* = \hat{\mathbf{b}} \cdot (\mathbf{B} + \nabla \times \mathbf{u}), \quad (6)$$

$\dot{\mathbf{u}}_1 = (\partial_t + \mathbf{u} \cdot \nabla) \mathbf{u}$ and $Z = (\mathbf{R}, \mu, v_{\parallel}, \theta)$.

Numerical Scheme

The second term in $\dot{\mathbf{R}}$ (5) and the second term in the square brackets in our Poisson equation (5) contain a partial time derivative of the potential-dependent flow velocity. We use that these terms are one order smaller in ϵ than their neighbouring terms in order to facilitate the numerical solution of our Vlasov-Poisson system (5). We choose to solve our Vlasov-Poisson equations (5) using a δf particle-in-cell (PIC) method, as in [5]. That is to say, we use Monte Carlo markers to represent distribution function quanta that are evolved according to consistent fields, whilst employing the splitting

$$F = F_0 + \delta F,$$

where we choose the equilibrium part $F_0 = n_0(2\pi T)^{-\frac{3}{2}} e^{-\frac{1}{2}v^2/T}$ to be Maxwellian, $n_0(\mathbf{R})$ is the background density, $T(\mathbf{R})$ is the temperature, v is the particle velocity and the fluctuating part δF is discretised as follows. We define

$$\delta F = N_p N^{-1} \sum_{n=1}^N 2\pi B_{\parallel}^{*-1} w_n(t) \delta(\mathbf{R} - \mathbf{R}_n(t)) \delta(\mu - \mu_n(t)) \delta(v_{\parallel} - v_{\parallel n}(t)),$$

where N_p is the number of particles, N is the number of markers,

$$w_n = \delta F_n V_{pn} \quad (7)$$

is the marker *weight*, δF_n is the average value of δF in the marker phase space volume

$$V_{pn} = d^6 z_n dN_n^{-1}, \quad (8)$$

$d^6 z_n = B_{||}^* d^3 R d\mu dv_{||} d\theta$ is an infinitesimal,

$$dN_n = N N_p^{-1} f_m(\mathbf{R}, v_{\perp}, v_{||}) d^3 R v_{\perp} dv_{\perp} dv_{||} d\theta$$

is the number of markers in $d^6 z_n$ and f_m is an arbitrary probability density function that transforms as a scalar density. Since our $B_{||}^*$ is potential-dependent (6), we initially use $B_{||}^* = B$ when computing V_{pn} (8). However, upon computing the potential, we may compute $B_{||}^*$ correctly (6), and thus correct V_{pn} . Additionally, we may choose to keep ϕ constant when correcting V_{pn} : in order to do this, we keep w_n constant and adjust δF_n using Equation 7. The only consequence of doing this is that initialisation with a particular distribution function is hindered. We may initially neglect the second term in the square brackets in our Poisson equation (5). We may approximate $\dot{\mathbf{u}}_1$ with a forward difference by taking a time step using $\dot{\mathbf{R}} = \mathbf{u}$.

Slab results

In the case of a weak-flow, each interacting vortex pulls the other around its centre, resulting in propagation. In the case of a strong-flow, there is a shift in the rotation frequency of the vortices that depends on the sign of the vorticity.

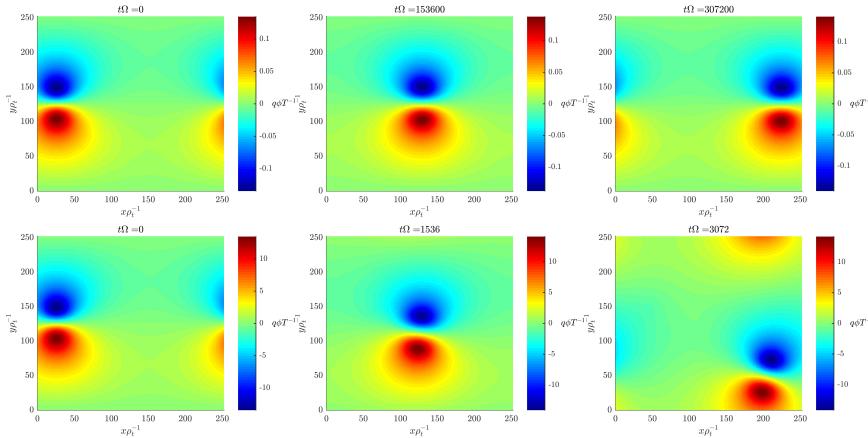


Fig. 3. Comparison of weak- (top) and strong- (bottom) flow blob propagation, where we have used periodic boundary conditions.

Stand-alone Poisson solver

We have developed a stand-alone Poisson solver with the following features: arbitrary-wavelength perturbations; cubic B-spline finite-element discretisation; slab and cylindrical geometries; background density and temperature gradients; MPI parallelisation; Fortran source code; based on the solver from the ORB5 code [6]. The following features are planned: extension to three dimensions; field-aligned geometry; nonlinear solution via a multigrid approach.

Solution of our Poisson equation

Due to the presence of ϕ in the symplectic part of our Lagrangian (4), \dot{u}_1 (5) is present in our Poisson equation (5). Formally, we may solve our Vlasov-Poisson system by writing our system Lagrangian L_s in terms of our particle Lagrangian L_p as

$$L_s = \int dZFL_p[Z, \dot{Z}, \phi(Z, \dot{Z})],$$

where species and temporal subscripts have been suppressed. Whilst a formal solution for \dot{Z} and ϕ exists, it is computationally intractable due to the dependence of ϕ on \dot{Z} (5). We may use that the second term in the square brackets in our Poisson equation (5) is one order smaller in ϵ than the first term, and perform an iterative solution of our Vlasov-Poisson system (5).

Conclusions and future work

A strong-flow gyrokinetic theory with a unified treatment of all length scales has been numerically implemented. Our Vlasov-Poisson system (5) is manifestly conservative, as it is obtained as a whole, directly from our Lagrangian (4). We use an iterative numerical solution of our Vlasov-Poisson system (5). We see strong-flow symmetry-breaking that depends on the sign of B_{\parallel}^* (6). Code verification has been performed with basic slab instabilities. An arbitrary-wavelength, stand-alone Poisson solver has been developed based on the ORB5 code [6]. The manifest conservation of our Vlasov-Poisson system (5) is preserved with our finite-element discretisation.

Centrifugal and drift instability simulations are to be performed. An ultimate goal would be a general magnetic geometry, electromagnetic numerical implementation.

References

- [1] T S Hahm. *Phys. Fluids*, 31(9):2670–2673, 1988.
- [2] A. M. Dimits, L. L. LoDestro, and D. H. E. Dubin. *Phys. Fluids B*, 4(1):274, 1992.
- [3] Andris M. Dimits. *Phys. Plasmas*, 17(5):055901, 2010.
- [4] B. F. McMillan and A. Sharma. *Physics of Plasmas*, 23(9):092504, 2016.
- [5] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T. M. Tran, B. F. McMillan, O. Sauter, K. Appert, Y. Idomura, and L. Villard. *Comput. Phys. Commun.*, 177(5):409–425, 2007.
- [6] J. Dominski, B. F. McMillan, S. Brunner, G. Merlo, T.-M. Tran, and L. Villard. *Physics of Plasmas*, 24(2):022308, 2017.