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Introduction

The gyrokinetic ordering parameter was originally[1]
e~ Q7 ~kpo~ plg' ~ 9T < Lkipi 1, (1)

where @ is the characteristic fluctuation frequency, Q is the gyrofrequency, k| is the charac-
teristic fluctuation parallel wavenumber, p; is the thermal gyroradius, Ly is the magnetic field
length scale, g is the particle charge, ¢ is the electrostatic potential, 7 is the temperature and k|
is the characteristic fluctuation perpendicular wavenumber. Ordering (1) can be generalised[2]

to give a weak-flow gyrokinetic ordering parameter,
e~ 0Q ! ~kpo~ ply! ~uv <1, 2)

where u is the ExB drift speed associated with ¢ and v, is the thermal particle speed. Ordering
(2) cannot be applied to all modern tokamak plasmas in general due to the presence of large

flows. A further generalisation[3] gives a strong-flow gyrokinetic ordering,
e~ 0Q ! ~kp~ply! ~ QT <1, 3)

where 1’ is the magnitude of the spatial derivatives of the ExB drift velocity associated with ¢.
Using Ordering (3), we present the discretisation of our manifestly conservative Vlasov-Poisson

system that is obtained directly from our gyrocentre Lagrangian[4].
Lagrangian
Our gyrocentre Lagrangian for electrostatic potential perturbations in slab magnetic geometry

up to first order is
T = [A(R)+vjb+u]-dR+ud6 — (3vi +uB+ 3u’ + (9))dr, 4)

where we use units such that m = g =T = 1, m is the particle mass, T is the temperature, g
is the particle charge, A is the magnetic vector potential, R is the gyrocentre position, b is the

magnetic field unit vector, u = B~'b x V(9), (W) (R, it,t) = (27) ! [dOdrS(R+p —r)y(r,1)
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for any function y, u is the conserved magnetic moment, ¢ is time, 0 is the gyroangle, r is the

particle position and p is the gyroradius.

This Lagrangian (4) does not contain any &'(€) terms, as these have all been Lie-transformed to

higher order.
Vlasov-Poisson system
The Vlasov-Poisson system obtained from our Lagrangian (4) is then

F,+RiF; =0,

R:u—l-Bﬁ*llA)Xil],

v =0,
0= / d°ZS(R+p —r)[BIF +B'b-V x F(bx i), (5)

where F is the distribution function that transforms as a scalar, Fg = 0, ¥ o = d'¥ for any
quantity ¥ and any coordinate , i € {1,2,3},

A~

W:b-(BJeru), ©6)

i) = (0 +u-V)juand Z = (R, u,v|,0).
Numerical Scheme

The second term in R (5) and the second term in the square brackets in our Poisson equation
(5) contain a partial time derivative of the potential-dependent flow velocity. We use that these
terms are one order smaller in € than their neighbouring terms in order to facilitate the numerical
solution of our Vlasov-Poisson system (5). We choose to solve our Vlasov-Poisson equations
(5) using a & f particle-in-cell (PIC) method, as in [5]. That is to say, we use Monte Carlo
markers to represent distribution function quanta that are evolved according to consistent fields,
whilst employing the splitting

F = Fy+ SF,

where we choose the equilibrium part Fy = n0(27rT)*%e*%V2/ T to be Maxwellian, ng(R) is the
background density, 7 (R) is the temperature, v is the particle velocity and the fluctuating part

OF is discretised as follows. We define
N
— x—1
OF = N,N ! Z ZEBH wu(t)0(R—R,(1))d (1 — ,un(t))5(v|| — an(t)),
n=1
where N, is the number of particles, N is the number of markers,

Wn = 8FViy, 7
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is the marker weight, O F;, is the average value of O F in the marker phase space volume
Vpn = d%z,dN;, 1, 3

dz, = Bﬁdg’Rdudv”dG is an infinitesimal,

dN, = NN, ' fu(R, v, ,v)d’Rv, dv dv;d6

is the number of markers in d®z, and fi, is an arbitrary probability density function that trans-
forms as a scalar density. Since our B|’“ is potential-dependent (6), we initially use Bﬁ = B when
computing V,, (8). However, upon computing the potential, we may compute B|*‘ correctly (6),
and thus correct V,,. Additionally, we may choose to keep ¢ constant when correcting V), in
order to do this, we keep w,, constant and adjust 0 F,, using Equation 7. The only consequence
of doing this is that initialisation with a particular distribution function is hindered. We may
initially neglect the second term in the square brackets in our Poisson equation (5). We may

approximate #; with a forward difference by taking a time step using R = u.

Slab results
In the case of a weak-flow, each interacting vortex pulls the other around its centre, resulting
in propagation. In the case of a strong-flow, there is a shift in the rotation frequency of the

vortices that depends on the sign of the vorticity.

Q2 =0 102 =153600 192 =307200

12 =0 10 <1536 ~ 10 =3072

Fig. 3. Comparison of weak- (top) and strong- (bottom) flow blob propagation, where we have

used periodic boundary conditions.

Stand-alone Poisson solver

We have developed a stand-alone Poisson solver with the following features: arbitrary-wavelength
perturbations; cubic B-spline finite-element discretisation; slab and cylindrical geometries; back-
ground density and temperature gradients; MPI parallelisation; Fortran source code; based on
the solver from the ORBS code [6]. The following features are planned: extension to three

dimensions; field-aligned geometry; nonlinear solution via a multigrid approach.
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Solution of our Poisson equation
Due to the presence of ¢ in the symplectic part of our Lagrangian (4), #; (5) is present in
our Poisson equation (5). Formally, we may solve our Vlasov-Poisson system by writing our

system Lagrangian Ly is terms of our particle Lagrangian L;, as
L= [ 4ZFL,(2.2,0(2.2))

where species and temporal subscripts have been suppressed. Whilst a formal solution for Z and
¢ exists, it is computationally intractable due to the dependence of ¢ on Z (5). We may use that
the second term in the square brackets in our Poisson equation (5) is one order smaller in € than

the first term, and perform an iterative solution of our Vlasov-Poisson system (5).

Conclusions and future work

A strong-flow gyrokinetic theory with a unified treatment of all length scales has been nu-
merically implemented. Our Vlasov-Poisson system (5) is manifestly conservative, as it is ob-
tained as a whole, directly from our Lagrangian (4). We use an iterative numerical solution
of our Vlasov-Poisson system (5). We see strong-flow symmetry-breaking that depends on the
sign of Bﬁ (6). Code verification has been performed with basic slab instabilities. An arbitrary-
wavelength, stand-alone Poisson solver has been developed based on the ORBS5 code [6]. The
manifest conservation of our Vlasov-Poisson system (5) is preserved with our finite-element
discretisation.

Centrifugal and drift instability simulations are to be performed. An ultimate goal would be

a general magnetic geometry, electromagnetic numerical implementation.
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