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An electron plasma can be confined for very long times in a Penning-Malmberg cylindrical

trap. In a wide range of experimental parameters, the axially averaged electron plasma dynamics

turns out to be analogous to that of a two-dimensional (2D) ideal (inviscid and incompressible)

fluid with uniform density, the flow vorticity being proportional to the plasma density n and

the stream function to the electrostatic potential φ [1]. Instabilities can arise in the system as a

consequence of growing diocotron modes, i.e., density and potential perturbations with a spatial

dependence of the form exp(ilθ), where the integer l represents the azimuthal wavenumber. The

ability to excite and control low-frequency diocotron perturbations in a magnetized nonneutral

plasma represents an opportunity to study dynamical properties of turbulent 2D fluids [2, 3, 4].

Recent investigations have directed attention to the behavior of strained flows under the action

of externally imposed perturbations [5].

An electron plasma column with a monotonically decreasing radial density profile (or, ideally,

a stepwise density profile), is stable against diocotron perturbations [6]. Under these conditions,

diocotron waves are typically excited by means of suitable static or time-dependent multipolar

drives applied on an azimuthally sectored electrode of the trap at the resonance frequency of the

desired wavenumber. In general, this scheme is limited by the number Ns of electrically insu-

lated azimuthal sectors of the electrode, yielding modes with l ≤ Ns/2. Generalizing a previous

work [7], it is demostrated both theoretically and experimentally that it is possible to overcome

this limit and selectively excite high-order diocotron modes with applied electric fields which

are co- or counter-rotating with respect to the azimuthal plasma rotation direction, by properly

choosing the drive frequency and the phase difference between adjacent sectors. Assuming an

ideal stepwise unperturbed radial density profile, n0(r) = n0H(RP − r), where H denotes the

Heaviside step function and RP is the plasma radius, the equilibrium rotation frequency is given

by ωD = en0/2ε0B, where −e is the electron charge, ε0 the vacuum permittivity and B is the

strength of the magnetic field (directed along the axial direction of the trap). The quantity ωD

is known as diocotron frequency, and sets the characteristic time scale of the E×B collective

plasma modes. Here we refer explicitly to the application of sinusoidally time-varying poten-

tials to a cylindrical electrode with Ns = 8 electrically insulated azimuthal sectors, but the results
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Figure 1: Sketch of the trap electrode arrangement. The outer electrodes GND and SH are

permanently grounded. Two outer electrodes are used as endcaps (potential VC) and an inner one

for the plasma generation applying an oscillating voltage VRF . The C’s electrodes have a length

of 9 cm. The S2, S4 and S8 electrodes are divided azimuthally into two, four and eight sectors,

respectively, and have a length of 15 cm. Diagnostic tools are also sketched: A charge collector

connected to a digital oscilloscope and a phosphor screen set to a potential Vph = 5− 10 kV,

whose image is recorded by a CCD camera.

can be generalized to the case of an arbitrary number of sectors. The boundary potential reads

δφ(r = RW ,θ , t) =
7

∑
m=0

Vm(t)[H(θ −mπ/4)−H(θ − (m+1)π/4)], (1)

where Vm = Vd cos(ωdt +σm jπ/4), with σ = ±1, and Vd and ωd = 2πνd the amplitude and

angular frequency of the external drive, respectively. The cases σ = −1 and σ = +1 refer to

“co-” and “counter-rotating” drives with respect to the azimuthal rotation of the unperturbed

plasma, respectively (the magnetic field is assumed in the positive axial (z) direction, so that

the electron plasma rotates in the positive azimuthal (θ ) direction). The integer index j ranges

from 1 to 4, corresponding to a phase difference between adjacent sectors of π/4,π/2,3π/4

and π , respectively. The cases j = 1,2,3 correspond to rotating drives, while j = 4 is relevant to

a non-rotating (octupole) drive. With the adopted phase relationship between the potentials on

the eight azimuthal sectors, a Fourier analysis shows that the boundary potential can be written

as a superposition of azimuthally propagating waves containing only modes of order 8k+ j and

8(k + 1)− j, where k is an integer index. This fact suggests how to excite diocotron modes

of (virtually) arbitrary order. Following Ref. [7], within the framework of a linear treatment

a potential perturbation on the wall of the form δφ = ε exp(ilθ − iωdt), where ε denotes the

amplitude, produces a potential perturbation on the plasma surface that is linearly growing with

time,

δφ(r = RP,θ , t) = ε

(
RP

RW

)l

[1+ i(lωD −Ωl)t] exp(ilθ − iΩlt), (2)

45th EPS Conference on Plasma Physics P1.4003



10 20 30 40 50 60 70 80 90 100 110

drive frequency [kHz]

10
-3

10
-2

10
-1

re
la

ti
v
e

 m
o

d
e

 a
m

p
lit

u
d

e
A

3
/A

0

A
4
/A

0

A
5
/A

0

A
6
/A

0

A
7
/A

0

Figure 2: Amplitudes (normalized over A0) of the domi-

nant An Fourier modes of the plasma contour vs νd . The

resonance curves are obtained with different excitation am-

plitudes and time spans: 1.7 Vpp, 200 ms (l = 3); 3.0 Vpp,

200 ms (l = 4); 2.5 Vpp, 100 ms (l = 5); 3.0 Vpp, 200 ms

(l = 6); 3.4 Vpp, 100 ms (l = 7).

Figure 3: CCD image obtained

with the application of a co-

rotating drive with Vd = 2.5 Vpp

and νd = 60 kHz (corresponding to

the maximum of the relevant reso-

nance curve in Fig. 2).

and therefore a significant deformation of the plasma surface, only when ωd = Ωl , where Ωl =

ωD[l −1+(RP/RW )2l] is the frequency of the l-th diocotron mode, and l = 8k+ j for σ =−1

or l = 8(k+1)− j for σ = 1, respectively.

The experiments have been performed in the Penning-Malmberg trap ELTRAP [8]. A low

density (n≈ 1–2 ·106 cm−3) electron plasma is contained within a stack of cylindrical electrodes

(inner radius RW = 4.5 cm), kept under ultra-high vacuum conditions (base pressure in the high

10−9 mbar range). A scheme of the trap is reported in Fig. 1. In the experiments reported here,

the plasma is contained between C2 and C8 electrodes (the plug potential is Vp = −80 V) for

a length LP ≈ 90 cm. The electron plasma is generated by applying a radio frequency (RF)

drive [9] with amplitude VRF = 5.65 Vpp and frequency 7.42 MHz to electrode C7 for 8–10

seconds. The generated plasma is characterized by an approximately flat radial density profile,

with a mean square radius ≈ 0.5RW . Just after the plasma generation drive is switched off,

the diocotron excitation drive is applied to the S8 electrode. This drive is then switched off

and at the same time the plasma is dumped against a positively biased (Vph = 8 kV) phosphor

screen grounding the electrode C8. The light emitted by the phosphor screen is collected by

a charge coupled device (CCD) camera obtaining a snapshot of the axially averaged plasma

density distribution. The magnetic field strength has been set at B = 0.12 T, while the frequency

of the drive has been varied searching for resonances. In general, in the linear regime (low
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amplitude drive, times of few plasma rotation periods) it is difficult to evaluate the effect of the

perturbation potential directly from the CCD images. The reported results therefore refer to a

mode excitation up to a fully developed nonlinear stage and long excitation times (≥ 100 ms).

The deformation of the plasma cross section has been chosen as a measure of the mode

excitation level. The contour of the plasma is determined as a sampled function RP(θ) in

the reference frame of the center of charge, detecting the crossing of a threshold level. The

threshold is obtained as a θ -average of the values of the plasma density where its radial deriva-

tive (at any given θ ) has maximum magnitude. The trigonometric Fourier expansion RP(θ) =

A0/2+∑
+∞

n=1 An sin(nθ +ϕn) finally gives the amplitudes An of the sinusoidal azimuthal defor-

mations of the contour. The experiments have been repeated at least 20 times for each drive

frequency. The averaged Fourier mode amplitudes An (normalized over A0, i.e., the correspond-

ing mean plasma radius) vs the frequency νd of the applied drive is shown in Fig. 2. The reso-

nance curves appear in general quite broad and the frequencies corresponding to their maxima

are shifted with respect to the theoretical values obtained from the idealized case of a step-

wise density profile. An example of plasma configuration obtained with the application of a

co-rotating drive on the S8 electrode, showing a well defined pentagonal plasma cross-section

is reported in Fig. 3. Preliminary measurements at resonance frequencies show that increasing

Vd , a progressive decrease of the total plasma charge is observed. This effect is easily explained

as the outermost part of the plasma column is lost to the radial wall in the interaction with the

externally-imposed field. The possible role in the initial stage of the application of the diocotron

excitation drive played by the population of positive ions produced during the RF plasma gener-

ation is presently under investigation. In conclusion, the experimental technique presented here

has the potential to be efficiently used for the manipulation of a nonneutral plasma, allowing to

selectively excite an arbitrary order diocotron mode by applying suitable co- or counter-rotating

electric fields on azimuthally sectored electrodes.
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