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We investigate properties of the plasma–sheath transition in the Bissell and Johnson (B&J) ex-
tension [1] of the archetypal Tonks and Langmuir (T&L) collision-free (CF) plasma and sheath
equation [2] (assuming a cold ion source) to discharges with Maxwellian sources of arbitrary
temperatures. Our work is based on highly accurate numerical and analytic solutions and sim-
ulations of the one-dimensional time-independent kinetic equations for the ion and electron
velocity distribution functions (VDFs) fi,e(x,v) coupled with the self-consistent electric field.
We consider symmetric boundary conditions at two perfectly absorbing co-planar plates, lo-
cated at positions x = ±L and characterized by the electric potential Φ(±L) ≡ ΦW , assuming
that starting from the symmetry plane (x = 0, Φ = 0) the electrostatic potential Φ(x) decreases
monotonically in directions positive and negative directions. The basic equations of the problem
are
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Here, n0 = ni(0) = ne(0), and Te,i,0 = Te,i(0), are the density and temperature in the center of
the discharge, e is the positive elementary charge, k Boltzmann’s constant, ε0 is the vacuum per-
meability, cs0≡ (kTe0/mi)

1/2 is the cold-ion sound velocity, with mi,e the ion/electron mass, and
E =−dΦ/dx↔ dϕ/dx is the electric field. The ion source Si =Rnnne0eβΦ/kTee−miv2/2kTn/(2πkTn)

1/2

is a function of potential, i.e., ∼ nβ
e = eβΦ/kTe with β = 0,1 here. The frequency νi = Rnn =

cs0/Li is either due volume ionization or to an external ion source originating from the per-
pendicular direction, e.g., in the cases when the model is applied to scrape-off-layer [3] (SOL)
plasma, with the source temperature Tn different from the self-consistently established ion tem-
perature Ti(ϕ).

Under the above conditions Eqs. (1) can be combined yielding the (un-normalized) energy
density balance expression, which we here consider as a special case of the plasma virial theo-
rem [4]: V (Φ) ≡ 2T − ε0E2/2 = const, with 2T ≡ ∑(ni,ekTi,e + ni,emi,eu2

i,e) the kinetic and
ε0E2/2 electrostatic-pressure contributions. The one-dimensional quantity V (Φ) = V = const
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is constant. Assuming Maxwellian electrons (ne = e−ϕ ) the virial equation reduces to

ni(Ti +u2
i )+Te0e−ϕ − ε

2 E2

2
= Ti0 +Te0, with ni = e−ϕ − d

dϕ

(
ε

2 E2

2

)
, (2)

with the normalized temeratures Te = Te0 ≡ 1 kept explicitly for convenience. Under the con-
dition that ε2E2/2 and its first derivative with respect to the potential (d/dϕ , called pseudo-
gradient) are negligible. Eq. (2) (with Te0 = 1) takes the form u2

i + Ti = (Ti0 + 1)e−ϕ − 1 so
that with the ion temperature known at any location/potential ϕ the local ion velocity can be
instantly calculated.
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Figure 1: Characteristic points obtained for Tn =
0 with several finite ε values.

For calculating fluxes to the boundary in fluid
approaches we need a proper (rather than "any")
point/potential such that processes within the sheath
can be neglected. Our approach to this problem is
illustrated in Fig. 1, where we present the behavior
of ε2E2/2 =

∫ ϕ

0 (ñi− ñe)dϕ̃ which in Ref. [5] has
been found to be rather universal for any ion-source
temperature as long as ε is sufficiently small. In
Fig. 1 we employ the analytic (ε = 0) and numerical
(small finite ε) solutions to the CF T&L discharge,
i.e., with a zero-temperature Maxwellian ion-source
[6], for obtaining ε2E2/2 =

∫ ϕ

0 (ñi− ñe)dϕ̃ and its derivatives. The most remarkable quantity
turns out to be the charge density pseudo-gradient d(ni− ne)dϕ , being always characterized
by an inflection point at ϕPE(ε) ≈ ϕPE(0) and a maximum at ϕSE(ε = 0) ≈ ϕSE(0). Hence,
ϕSE −ϕPE ∼ 1/3 is insensitive to both temperature and ε , with the particular values ϕPE found
and tabulated in Refs. [5, 7] for a wide range of ion-source temperatures. It has been found that
for sufficiently small ε the charge density is negligible at ϕPE while the electrostatic pressure
is negligible at ϕSE . Since the value of the charge-density gradient at ϕSE is quite insensitive
not only to ε but also to ion-source temperature. For these reasons, separate definitions of the
plasma edge (at the potential ϕPE), the sheath edge (at the potential ϕSE), and the plasma-sheath
transition region (PST; between them) have been introduced [5].
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Figure 2: Ion VDFs obtained with PIC simula-
tions in comparison with numerical solutions.

Solving the B&J problem with finite ε requires
finding the electric field as a kernel of the Poisson
equation and the ion VDF from the equations
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where K0 is the Bessel function of zeroth order,
y = v2/2, ϕb stands for the boundaries of integra-
tion ϕPE or ϕW (depending on whether ε is neglected or not), and the eigenvalue L/Li is tabu-
lated in Ref. [7] for a large number of Tn values. In Fig. 2 we show the results obtained from the
above equations (red lines) for Tn = 3, together with results obtained from particle-in-cell (PIC)
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simulations. VDFs from PIC simulations are presented for CF confitions(blue lines) as well as
for strongly enhanced ion-ion Coulomb collisions (CC – green curves).
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Figure 3: Theoretical (ε = 0) and simulated
(with finite ε) temperatures and density/pressure
profiles.

In Fig. 3 we illustrate the simulated ion temper-
atures Ti obtained with Tn = 3 for the "flat" ion
source (β = 0) as functions of potential, together
with the electrostatic derivatives. It is evident that
the increase in ion temperature, in comparison with
the vanishing-ε limit, is to considerably increased
ε = 2.7x10−3 rather than due to Coulomb colli-
sions, i.e. to the particular shape of the ion VDF. Vi-
sually, ε2E2/2 =

∫ ϕ

0 (ñi− ñe)dϕ̃ and its derivatives
behave similarly as those presented for the cold-
source discharge presented in Fig. 1, but actually
at PE these quantities in the cold (T&L), warm (B&J) and fluid models scale differently. In our
approach, relying on the product εE (being always a finite quantity), the scaling is

EPE
[
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]
PE [ni−ne]PE [d(ni−ne)/dϕ]PE

T&L: ε−4/9 ε10/9 ε6/9 ε2/9

B&J: ε−2/7 ε10/7 ε6/7 ε2/7

fluid: ε−2/5 ε6/5 ε4/5 ε2/5

 .
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Figure 4: The terms entering the virial obtained
for Tn = 3 with ε = 0.

From Fig. 2 and the above scaling one may con-
clude that ε2E2/2 and (ni−ne) could be neglected
in both plasma and PST regions, i.e., that the sim-
plified expression u2

i +Ti = (Ti0 +1)e−ϕ −1 might
be used for calculating the directional ion sound ve-
locity for any realistically small ε . In the sheath re-
gion, the full expression 2 must be used. However,
it seems that the hypothesis of insensitivity of the
relevant terms ε2E2/2, (ni−ne) and d(ni−ne)/dϕ

to particular values of the parameters Tn, ε , β , and
thus the possible existence of the “universal sheath-
wall asymptote” (cf., Fig. 7 and Eq. (30) in Ref. [5]), can be extended to plasmas with Coulomb
collisions as well. Here we just illustrate the validity of theoretical Eq. (2) in Fig. 4 correspond-
ing to Tn = 3, while simulated results can be found in Ref. [7].

The above results, obviously enable straightforward calculation of the ion directional ve-
locity inside plasma and PST regions at any point, but one might be especially interested in
the particular location at which the ion directional ion velocity u2

i equals the ion sound speed
c2

s (ϕ) = T ∗e +κiTi(ϕ), where T ∗e ≡−ne/(dne/dϕ) = 1 for Maxwellian electrons while the dif-
ferential ion polytropic coefficient function (DPCF) κ = 1+ (d lnT )/(d lnn) is tabulated in
Ref. [5]. For finite ε , the ion directional velocity in the plasma and PST regions can also be
represented in the form of the unified Bohm relation
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describes the contribution of the ions originating from the symmetric part of the ion VDF, i.e.,
those ions which are created between the point of observation and the wall, with the point of ob-
servation included. At the sonic point the unified Bohm relation/criterion (5) (u2

i = c2
s −u2

i,K +

u2
E) reduces to two expressions (u2

i = c2
s and u2

i,K = u2
E) with the physical meaning that at the

sonic point the rate of ion production is compensated by their removal due to the electric field.
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Figure 5: Simulated potential profiles and ion
VDFs for several ε values with Tn = Te = 1.
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We now investigate via PIC simulations the sce-
nario Tn = Te = 1 and β = 0 (strong source within
the sheath) in the manner described in Ref. [8]. In
Fig. 5 we present the ion VDFs at several loca-
tions/potentials for a relatively high and an extraor-
dinary small plasma density, i.e, with a rather thin
and extremely thick sheath, respectively. It can be
seen immediately that in the latter case the ion VDF,
even when obtained very deep in the sheath (e.g.,
number 4), is characterized inside a long "tail" of
ions which penetrate back into the plasma region.
In Fig. 6 profiles of temperatures, polytropic coeffi-
cients, directional and ion-sound velocities are plot-
ted showing that for ε1 and ε2 the locations of ϕPE
and ϕSE are rather insensitive to ε and the source
temperature. This holds relatively well even for a
rather high value of ε , such as ε3 = 7.86× 10−3.
However, while the sonic point still shifts towards
the wall, as in the case of high ion temperatures
and β = 1 in Ref. [5], this shift is rather insignif-
icant here and the value of the ion directional ve-
locity at that point (in contrast to discharges with
high source temperatures and β = 1 from Ref. [5])
here decreases with increasing ε . From the physical
point of view it should be noted that the ion direc-
tional velocity in the case of extremely low density
(ε3 = 2.67×10−2) decreases at any point of the dis-
charge, meaning that the "tail" of ions produced in
the sheath region has a strong effection to u2

i . Nev-
ertheless, as a final result the location of the sonic
potential ϕB stays "safely" within the PST region,
i.e., not far from ϕPE = 0.625. We conclude that,
e.g., u2

iB = c2
s ≈ 1.5 obtained from the theoretical model with ε = 0, can be regarded as univer-

sal for any realistic collision-free discharge with ion source temperature Tn = Te = 1.
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