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Abstract

Closed expressions for electron-electron correlation functions and fully ionized plasma

dc electrical conductivity, heat conductivity and thermopower are obtained. The approach

is based on the linear response theory in the formulation of the relevant statistical oper-

ator method and takes into account both dynamical screening and arbitrary degeneracy.

The expressions are constructed in the form that includes the asymptotic properties for

non-degenerate [1], moderate [2, 3] and strongly degenerate [4] plasma and describe more

wide density-temperature region that in [5]. The role of exchange parts in electron-electron

correlation functions is discussed. The results obtained might be useful in calculating the

multicomponent plasma transport properties.

Technical description

We consider a multicomponent plasma in the adiabatic approximation (masses of all ions and

atoms are much greater than the electron mass). The first Born approximation with respect to

screened interactions is used. Within the linear response theory in the formulation of Zubarev

[6], transport properties are expressed via force-force correlation functions [7–9]. The electrical

conductivity, the thermopower, and the heat conductivity are related to the Onsager transport

coefficients Lik = Lki according to

σ = e2L11 (1)

α = (eT )−1L12/L11 (2)

λ = T−1(L22−L2
12L11) (3)

where

Lik =−
(−h)i+k−2

Ωdet(d)

∣∣∣∣∣∣ 0 k−1
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i−1
βh N1−N0 d

∣∣∣∣∣∣ , (4)
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)
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Nn0

Nn1
...

Nnl
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In (1) - (6) Ω - the system volume, Nmn,dmn are correlation functions for the thermodynamic

equilibrium, Ne = Ωn - the number of electrons, h - the enthalpy per one electron, T - tempera-

ture and β = (kBT )−1. In the adiabatic limit we can omit the ion flux and obtain for Eq.(6)

dmn = dei
mn +dee

mn +dea
mn, (7)

Nmn = Ne
Γ(m+n+5/2)

Γ(5/2)
Im+n+1/2(β µ id

e )

I1/2(β µ id
e )

, (8)

with Iν(y) = 1
Γ(ν+1)

∞∫
0

xν dx
ex−y+1 , µ id

e - the ideal part of the electronic chemical potential.

Correlation functions dmn (for electron-ion, electron-electron and electron-atom collisions)

are evaluated using thermodynamic Green’s functions. The lowest order of the perturbation

theory (the first Born approximation) gives for the Coulomb interaction V (q) = e2(q2Ωε0)
−1

screened due to the medium polarization Lenard-Balescu collision integrals [10].

We introduce dimensionless parameters: the coupling constant Γ = (e2β/4πε0)(4πn/3)1/3

and the degeneracy parameter Θ = (2m/β h̄2)(3π2n)−2/3 = kBT/EF , where EF = h̄2

2m(3π2n)2/3.

Interpolations for e-e collision integrals

In previous works [3, 5] the Chebyshev polynomial expansion method was successfully used

for dee
11, dee

12 and dee
22 and for arbitrary plasma parameters. This gives the possibility to use closed

(Γ,Θ)-dependable expressions for them in obtaining transport properties instead of long-time

calculations. We describe this procedure for dee
11.

Interpolations should take into account the following asymptotic properties:

dee
11 = d0

√
2

2

[((
1+0.114Θ

−3/2
)

ln
Θ

Γ
−0.057

)]
(9)

for Θ� 1, Γ� 1 [2],

dee
11 = 0.531d0Θ

1/2
(

ln
Θ

Γ
+1.22

)
(10)

for Θ� 1, Γ�Θ,

dee
11 = 15.4d0Θ

2
Γ
−3/2

(
1− (6−0.5lnΓ

2
Θ)

√
Θ

Γ

)
(11)

for Θ� 1, Γ� 1 , with d0 =
4
3(2π)1/2 m1/2

e e4N2
e β 3/2

Ω(4πε0)2 . One of the possible interpolations with 0.1

accuracy for Γ∼Θ∼ 0.1 and 0.05 accuracy for Γ≤ 2, Θ > 0.1 and Θ≤ 0.02, arbitrary Γ is:

dee
11 = d0

√
2

2
F1F2

(
1+0.0345

(
Γ

Θ

)3/2

F3

)−1

(12)

where

F1 =
(

Θ
2 +0.114Θ

1/2
)(

Θ
2 +0.152

)−1
(13)
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F2 = ln
Θ

Γ
−0.0570+
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0.156+Θ

+4ln

(
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√
Γ

Θ

)
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(
1+(6−0.5lnΓ

2
Θ)

√
Θ
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Interpolations for transport coefficients of a fully ionized plasma

Figure 1: The σ∗/σ∗0 ratio as the function

of the degeneracy parameter. Solid lines

- [11], dashed lines - [12]. 1 - Γ=0.1, 2 -

Γ=1, 3 - Γ=2.

Similarly, it is possible to construct a closed ex-

pression for transport coefficients of a fully ionized

plasma based on asymptotic properties. Here we re-

strict ourselves to a graphic illustration of results.

Fig.1 represents the comparison of obtained electri-

cal conductivity with well known approximations

σ∗0IT and σ∗0ERR for the reduced electrical conduc-

tivity σ∗(Γ,Θ)= m1/2e2β 3/2

(4πε0)2 σ(Γ,Θ) made in [11,12]

correspondingly.

The approximation [11] made in semiempirical

way for e-e scattering overestimates the values of

electrical conductivity, especially in the degener-

ate region. The approximation [12] was constructed

with accounting strong collisions and Debye-Onsager relaxation effect, and its deviations from

the first Born approximation are understandable.

Figure 2: Lorentz number L as the func-

tion of the degeneracy parameter. 1 -

Γ=0.1, 2 - Γ=1, 3 - Γ=2.

Fig.2 and Fig.3 illustrate the behaviour of the cal-

culated Lorentz number L = λ

T σ

(
e

kB

)2
and the re-

duced thermopower a = αe
kB

for the fully ionized

plasma. The Lorentz number reveals a tendency

to a Γ-dependent minimum for intermediate val-

ues of Θ. Well-known asymptotic values for the

Lorentz number are 1.6183 for low-density high-

temperature plasma and π2/3 =3.2899 for the de-

generate case. Note the very weak Γ-dependence

of thermopower for given Θ. The corresponding

asymptotic behaviour for the reduced thermopower

gives 0.7053 for Θ � 1 and LΘ for Θ � 1. Of

course, the transport coefficients obtaining for real plasma should take into account the scatter-

ing by atoms and more complex neutral components, and it is a separate problem. Parametriza-
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tion of dee
mn should greatly facilitate the overall calculations.

Exchange part of e-e correlation functions

Figure 3: Reduced thermopower a = αe
kB

as the function of the degeneracy param-

eter. 1 - Γ=0.1, 2 - Γ=1, 3 - Γ=2.

Usually the exchange parts of Lenard-Balescu in-

tegrals for e-e correlation functions are not used for

calculations because of their small value in com-

parison with direct ones. In addition there are some

computational difficulties for the simultaneous ac-

counting of degeneracy and dynamical screening

for exchange. In the static screening approximation

the leading term of exchange parts in dee
mn in the low-

density high-temperature limit have the same order

as corrections due to dynamical screening account.

It is possible that for this reason the calculation of

the exchange correction in the static approximation

will be sufficient for arbitrary degeneration. It is obvious, that the exchange reduces e-e correla-

tion functions and increases the conductivity, but the consequence treatment requires to obtain

simultaneously exchange terms in dielectric function local field corrections.
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