
Weak drift wave turbulence and the statistics of random matrices

F. Spineanu, M. Vlad, V. Baran

National Institute of Laser, Plasma and Radiation Physics, Bucharest, Romania

This is an attempt to develop a new approch to renormalization of the particle response to

drift wave turbulence, using statistics of the density of eigenvalues of random matrices

The ensemble of drift waves, with random amplitudes and phases (i.e. drift turbulence) pro-

duces a scattering of the orbit of a particle. The propagator (inverse of the operator of derivation

along the particle’s trajectory) and the vertex (the nonlinear coupling of drift modes) are modi-

fied by terms that must be determined from statistical average over the turbulent fluctuations.

The renormalization can be made by acting upon the propagator by adding a term of diffusion

in k space [1]. A more systematic approach uses the diagrammatic expansion of the partition

function with the action functional determined according to Martin-Siggia-Rosen method [2].

This will modify the propagator and the vertex. A method that can be used in practical appli-

cations is Direct Interaction Approximation (Kraichnan, Terry-Diamond [3]) where the higher

order correlations are approximated by assuming a strict channel of transfer of energy by mode

coupling. We try here to explore an alternative approach to the renormalization in the drift wave

turbulence.

Individually, each "event" (i.e. trajectory of a charged particle in the electrostatic wave) from

the statistical ensemble that we invoke when we perform averaging, can be seen either as the un-

modified particle’s equation of motion but in a modified potential or as a modified equation of

motion in the un-changed potential. The statistical averaging does not relay on these distinctions

and discerning between these alternatives is simply irrelevant. We only retain from the second

alternative that one can see, at least qualitatively, the renormalization as the result of a certain

change operated upon the equation of the wave. Being a sort of "pull-back" from the statistical

averaging, one cannot say unequivocally what would be that modification.

However it may be useful to explore a class of changes of the drift wave equation that can be

seen as inducing renormalization. This is equivalent to look for changes on the equation of drift

wave eigenfunctions. An approximative idea about the form of the "modified" eigenfunction that

would reflect the renormalization is the expected property of them to be more concentrated in

space. This is compatible with the idea that the correction introduced by the renormalization is

however small and the scattering of the particle orbits is not too large since this would produce,

statistically, contributions to higher order of correlations.

We start by recalling that the set of eigenfunctions of the drift wave instability consists of
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Hermite polynomials, hk (x), k = 1,N.

hk (x) = (−1)k exp

(
N
2

x2
)

dk

dxk exp

(
−N

2
x2
)

One uses the monic polynomials that have coefficient 1 to the highest power of the variable x,

πk (x) =
hk(x)
Nk =

k
∏
i=1

(x− xi). Consider a set of hermitean N ×N matrices, H, whose complex

entries are random variables. The elements of the matrices are stochastic processes in time δ t,

Hi j → Hi j +δHi j,
〈
δHi j

〉
= 0,

〈(
δHi j

)2
〉
=
(
1+δi j

)
δ t. We denote the (random) eigenvalues

of these matrices {xi}i=1,N . One defines the joint probability density P(x1,x2, ...,xN, t). The

equation for P is [4]
∂P
∂ t

=
1
2

N

∑
i=1

∂ 2P

∂x2
i

−
N

∑
i=1

∂
∂xi

[E (xi)P]

The connection between the entries Hi j of the random matrices to the eigenvalues is a change

of variables with the Jacobian

Δ =
N

∏
i=1

N

∏
j=1,i< j

(
x j − xi

)2

The equation shows that there is a Coulomb force acting between the eigenvalues

E
(
x j
)
=

N

∑
i=1,i�= j

1
x j − xi

The average density of the eigenvalues ρ̃ (x, t) is obtained from P by integrating over the vari-

ables,

ρ̃ (x, t) =
∫ N

∏
k=1

dxkP(x1,x2, ...,xN, t)
N

∑
l=1

δ (x− xl)

and including the constraint of normalization
∫

dxρ̃ (x, t) = N. It is also introduced the scaled

density ρ̃ (x, t) = Nρ (x,τ) and the function of density in two points

ρ̃ (x,y, t) =

〈
N

∑
l=1

N

∑
j=1, j �=l

δ (x− xl)δ
(
y− x j

)〉

Using the equation for the joint probability P and in the definition of ρ̃ one obtains

∂ρ (x,τ)
∂τ

+
∂
∂x

ρ (x,τ) P
∫

dy
ρ (y,τ)
x− y

=
1

2N
∂ 2ρ (x,τ)

∂x2 +
1
N

P
∫

dy
ρc (x,y,τ)

x− y

At the limit N →∞ the RHS can be neglected. We apply the Hilbert Transform to the equation

and obtain the equation of the resolvent, the ideal (nonviscous) Burgers

∂G
∂τ

+G(z,τ)
∂
∂ z

G(z,τ) = 0
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where G(z,τ) = 1
N

〈
tr 1

z−H(τ)

〉
=
∫

dyρ(y,τ)
z−y . For z = x− iε for x ∈ R, (1) the imaginary part of

G(z,τ) is the average spectral density ρ (x,τ); (2) the real part of G is the Hilbert transform of

ρ .

Now let us look from a different direction:

After rescaling the time variable t → τ
N the solution of the equation for the probability is

P(x1,x2, ...,xN,τ) =C (τ)∏
i< j

(
xi − x j

)2
exp

(
−

N

∑
i=1

N
2

x2
i

τ

)

where C (τ) is fixed by the normalization. This should be taken as a suggestion: the polynomials

that we need should be orthogonal with the time-dependent measure exp
(
−N

2
x2

τ

)
. They are

obtained starting from the Hermite polynomials hk (x) and making the substitution N → N/τ .

The orthogonality relation is∫ ∞

−∞
dxexp

(
−N

2
x2

τ

)
πn (x,τ)πm (x,τ) = δnmc2

n

where c2
n = n!

√
2π
( τ

N

)n+1/2
. This new functions πk (x,τ) verify the equation

∂
∂τ

πk (x,τ) =−νs
∂ 2

∂x2 πk (x,τ) where νs =
1

2N

This is an equation (1) with negative dffusion, and (2) with diffusion coefficient 1/(2N) in-

versely proportional with the number of particles. Further, one applies an inverse Hopf-Cole

transformation and the functions πk (x,τ) are transformed into

fk (z,τ) = 2νs
∂
∂ z

lnπk (z,τ) =
1
N

k

∑
i=1

1
z− xi (τ)

The equation for fk is

∂ fk (z,τ)
∂τ

+ fk (z,τ)
∂ fk (z,τ)

∂ z
=−νs

∂ 2 fk (z,τ)
∂ z2

The connection is between fk and πk and in particular between fN and πN . The later is

known to be equal to the statistical average of the characterstic polynomial of the matrix H (τ),

〈det [z−H (τ)]〉 = πN (z,τ). In the large N limit the last member fN (z,τ) coincides with the

average of the resolvent fN → G(z,τ) and the imaginary part of G gives the density of the

eigenvalues of the random matrices.

Modifying the density of eigenvalues G means to replace the equation for the the Hermite

polynomials by addition of a supplementary term.
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Figure 1: Cusp - strong localization of the Sivashinsky solution.

The suggestion is to concentrate the function fN in a reduced spatial interval and the modifi-

cation that seems adequate is to introduce a new term consisting of the Hilbert transform acting

on the function fk, i.e. the term Λ [ fk]. Then the equation becomes the Sivashinsky equation

for which it is known that the low amplitude fluctuation evolve by coalescence to form a cusp

profile. This will provide the expected localization in space.

In Conclusion, the connection between drift wave eigenmodes and the density of the eigen-

values of random matrices, which is mediated by the Burgers equation, provides a possibility to

implement renormalization by modifying the equation for the electrostatic potential. For more

localized functions, the change from Burgers to Sivashinsky equation seems a possible solution.
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