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Introduction

The first step to realize an automatic data analysis for fusion plasma experiment is automat-

ically fitting noisy data measured routinely. A textbook example of fitting procedures is the

minimization of the squared difference between the measured data and some parameterized

functions such as polynomial. This model implicitly assumes that both the noise distribution

and the latent function form are already known, however, it is always not the case for the real

world data analysis.

Figure 1 shows a typical example of the Thomson scattering electron density data meaured for

Large Helical Device plasma. The fit result with the least squared method is almost meaningless

(Fig.1 (b)), because of the above deviation. In particular the noise on the data is clearly non-

Gaussian, while the least squares method assumes homoscedastic Gaussian noise.

Many algorithms have been proposed to fit the data with non-Gaussian noise more robustly,

e.g. Huber regression. These methods work much better than the least squares, as shown in

Fig.1 (c) and (d), but they sometimes show the under- or over-fitted results, i.e. they neglect

significant pattern on the data as noise or vice versa. Therefore some human supervision has

been always necessary.

In this work, we point out that such the unstableness is caused by the deviation between the

probabilistic model that is implicitly assumed in the fitting analysis and the true data distribu-

tion. For the purpose of finding the most robust and accurate fitting algorithm, we optimize a

model so that its generative model fits the data distribution.

Theoretical perspective of the robust analysis

Based on Bayesian statistics, the goodness of a model M for particular (k-th) data y(k) can

be measured by the merginal likelihood,

p(y(k)|M ) =
∫

p(y(k)|θ ,M )p(θ |M )dθ (1)
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Figure 1: (a) A typical electron density data obtained by Thomson scattering systm for LHD plasma,

as a function of time and the major radius (R). A fit results by several methods are shown in (b)–(e).

The top figures show the results as a spatio-temporal evolution, while the bottom figures show the data

(gray markers) and the fit results (solid curves) for a single frame. (b) results by the least squares method

with Gaussian basis, (c) results by the Huber regression method with Gaussian basis. (d) results by the

variational Gaussian process regression with student t-distribution, (e) results by this work.

where, p(y(k)|θ) is likelihood of data y(k) with given fitting parameter θ . Noise distribution

and the latent function form are implicitly included in the likelihood and the prior distribution

p(θ |M ).

The robustness of the model M against the data that will be obtained in the future, y(k+1),

y(k+2), y(k+3), . . ., is measured by an expectation of this merginal likelihood,

lim
N→∞

1
N

[ N

∑
i=1

log p(y(k+i)|M )
]
=

∫
p(y) log p(y(k+i)|M )dy =−KL

[
p(y)||p(y|M )

]
+ const.

(2)

where p(y) is the true distribution of y that will generate data in the future. This expecta-

tion is identical to the minus of Kullback-Leibler divergence between the true data distri-

bution p(y) and the modeled data distribution p(y|M ), where Kullback-Leibler divergence

KL[q(x)||p(x)] =
∫

q(x) log q(x)
p(x)dx is a measure of the distance between the two probability dis-

tributions q(x) and p(x). In other words, the data distribution by the best model p(y|M best) is

closest to the true data distribution.

Model

A method we propose here is to construct a flexible generative model, i.e. the latent function

form, the prior distribution, and the noise distribution, with neural networks and optimize their

weights to fit our generative model to the true data distribution estimated from the large amount
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of the existing experimental data. We applied this method to Thomson scattering data in Large

Helical Device.

For the latent function form, we assume the following generalized linear combination,

f (r,θ (k)|M ) = exp
[ M

∑
i

c(k)i ϕi(r|M )
]
, (3)

where c(k)i is coefficients of the linear summation, which is specific for the measurement data

k. On the other hand, ϕi(r|M ) is the basis function that is common for all the data, which is

expressed by a neural network.

For the prior distribution of θ (k)
i , we adopted the independent Gaussian distribution with

variance 1,

p(θi|M ) = N (θi|µi,1) (4)

where µi is the mean of the prior distribution, which also belongs to M .

We assume the noise distribution by the following form of the likelihood,

p(yi| f ,Θlik) = S t
(
yi| f ,σ( f |M ),ν( f |M )

)
, (5)

where S t(x|µ,σ ,ν) is student’s t-distribution for random variable x with mean µ , scale param-

eter σ and the degree of freedom ν . For modeling the heteroscedasticity of the noise, we assume

that both the scale parameter and the degree of freedom depends on the true function value f .

Since the forms of σ( f |M ) and ν( f |M ) are unknown, we model them by neural networks,

where their weights are also regarded as the model prameters.

We optimized these model parameters, i.e. the neural network weights in the latent function

form and the likelihood, and the mean of the prior distribution, so that they maximize Eq. 2.

Results
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Figure 2: First four basis functions ϕ(r) es-

timated from LHD Thomson scattering data.

Figure 2 shows the first four basis functions, that

are estimated from the optimization. Three basis

functions (ϕ0, ϕ2, ϕ3) have different spatial resolu-

tions at r < 0.6, where ϕ0 is most smooth, while ϕ3

has an oscillation structure. Sharp structures around

r ≈ 0.7 m can be seen in these basis functions. They

might represent the intrinsic magnetic island struc-

ture in LHD. ϕ1 has a steap gradient at r > 0.7 m,

which is used to represent the steep gradient near

the last closed flux surface.
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All the basis functions have a low spatial resolu-

tion in the core region (reff < 0.6 m) while have a high resolution in the edge region (reff ≈ 0.65

m).

Figure 3 shows typical fitting results for a testing data. Black curve shows the median of the

posterior distribution of latent functions, while the dark and light shadows show the 65% and

95% region of the likelihood. Note that with Gaussian distribution, the 95% region is nearly two

times wider than the 65% region, while with student-t distribution with less degree of freedom,

the difference becomes larger.
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Figure 3: Typical data of Te and Ne

data measured by LHD Thomson scat-

tering system. Our fit results are shown

by solid curves. Shaded regions indi-

cate the coverage probabilities of the

likelihood, where light and dark re-

gions indicate 95% and 65% coverage

probability.

The likelihood width is estimated to have a dependence

on the latent function values, i.e. for the width is large

in the low temperature and density region (reff > 0.7 m)

also in the very high temperature region (Te > 5 keV).

This dependence is consistent with the characteristics of

the Thomson scattering instruments. Most of the training

data stay whithin the 95% region. It can be seen that the

region corresponding to the outlying points is much larger

than the ordinary points.

In Fig. (d), we also showed the fit result by our method.

Our method is most robust against the outliers, but still

keeping the detailed structure in the data.

Summary

We have developed a method to learn a robust regres-

sion algorithm from the data. We demonstrated that our

model trained in this work outperforms other conven-

tional robust analysis methods in terms of the robustness

and the accuracy.

The model developed and trained in this work was al-

ready integrated in the LHD automatic analysis system.

When a new Thomson scattering data arrives, our pro-

gram runs automatically and provides the fitting result based on the trained model. The results

are being used by more than 80 other automatic analysis programs in LHD.
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