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When the nested magnetic surfaces that confine a non-axisymmetric plasma have an 

outermost surface that is well separated from the walls, then the plasma reaches the 

surrounding walls along magnetic flux tubes that are defined by turnstiles in cantori. An 

analytic model is derived in which the width and nature of the intersection of points of 

magnetic flux tubes can be studied. This exact model is based on the Boozer-Rechester two 

wire model [A. H. Boozer and A. B. Rechester, Phys. Fluids 21, 682 (1978)]. Boozer and 

Rechester represented the magnetic field using the complete elliptic integrals and the Jacobi 

elliptic functions, but they did not place the equations in terms of an explicit magnetic field 

line Hamiltonian. In our model this is done and the magnetic field lines are modified by the 

addition of a fixed small radial spiraling velocity. The lines eventually cross the outermost 

confining magnetic surface and form flux tubes that strike the surrounding walls. The width 

and nature of the intersection of points of these flux tubes are studied in the limit as the 

spiraling velocity vanishes. This is done for both an axisymmetric divertor and for an 

axisymmetric divertor subjected to a quadrupole perturbation that has an orientation that 

rotates with the toroidal angle. The scaling with the spiraling velocity of the loss time and 

size of the intersection region give the important information on the topology of the magnetic 

field lines, which determines the plasma-exhaust properties of a divertor.  Some of these 

topological features appear to have a universal scaling. 

 Two wire model of Boozer and Rechester [1] is used to calculate the poloidal flux ψp 

in axisymmetric divertor with quadrupole magnetic perturbation. Poloidal flux is Hamiltonian 

for the trajectories of magnetic field lines. From the expression for the poloidal flux the 

equations for the trajectories of magnetic field line in axisymmetric divertor are derived for 

regions inside the separatrix, outside the separatrix, and with and without exact quadrupole 

perturbation [2]. These equations involve complete elliptical integrals K(k) and E(k) and 

Jacobi elliptic functions sn, dn, and cn. A rather unusual choice for the magnetic angle θ is 

made to circumvent the jump in magnetic angle outside the separatrix. Full details are given 

in [2]. The basic geometry of the model is shown in Figure 1.  N0 = 3600 field lines are 

started on the starting surface, Figure 3 and integrated for 10,000 toroidal circuits. The strike 

points on the three walls (Figure 3) are calculated. Field lines are given a radial velocity uψ. 
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uψ is normalized to the toroidal flux ψs enclosed by separatrix. uψ/ψs is varied from 1E-2, 9E-

3, 8E-3,…,1E-6 per radian of toroidal advance. The number of lines that have not struck the 

walls is NB(φ). φ is the toroidal angle. φ0 is the toroidal angle when the first line strikes the 

walls. φLOSS is the toroidal advance after φ0 when NB(φ)/N0 = 1/e. 

 This paper investigates how the magnetic flux in magnetic turnstiles escapes by 

threading through infinite Markov chain of cantori in axisymmetric divertors [3]. This is an 

extremely complicated process. The simulation methodology developed for the study 

quantifies the process in terms of scaling laws for φ0, φLOSS, and NB(φ) with uψ in the limit as  

uψ→ 0. Scaling laws are calculated from the simulations for unperturbed axisymmetric 

divertor and for perturbed axisymmetric divertor when the exact quadrupole perturbation is 

high. Preliminary results of study are reported. 

Width of stochastic layer: When an axisymmetric divertor is perturbed, the width of the 

strike points on the wall has a sharp change in scaling at the perturbation amplitude of δ = 

2 X 10-4, Figure 4. The region of δ > 2 X 10-4 is the high perturbation region and the region δ 

< 2 X 10-4 is the low perturbation region. 

Unperturbed axisymmetric divertor: For unperturbed axisymmetric divertor, φ0 scales as 

1/uψ, Figure 5. φLOSS scales as exp(-constant· uψ) for the wall inside the upper lobe (wall 1);  

φLOSS is roughly constant for uψ < 10-3 and again constant for uψ > 10-3 for wall through the 

X-point (wall 2); and φLOSS scales as uψ to the power -5/3 for the wall in lower lobe (wall 3). 

See Figure 6. NB(φ)/N0 scales as 1 0 ln( ) /g p uψψ  where g1 is a universal constant independent 

of uψ and g1 ≈ -1/3 for all three walls, Figures 7 and 8. 

Perturbed axisymmetric divertor – High perturbation: Amplitude of quadrupole 

perturbation is chosen to be δ=10-3. φ0 scales as 1/uψ for all three walls. φLOSS scales as uψ to 

the power -6/5 for wall 1 and power -4/5 for walls 2 and 3, Figure 10. NB(φ)/N0 scales 

as  with the power p in exponent p= 2 for all three walls in the limit as 

u
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ψ→0; Figure 11. 

Perturbed axisymmetric divertor – Low perturbation: Amplitude of quadrupole 

perturbation is chosen to be δ=10-4. φ0 scales as 1/uψ for all three walls. φLOSS scales as uψ to 

the power -4/5 for wall 1 and power -1/2 for walls 2 and 3, Figure 12. NB(φ)/N0 scales as 

 with the power p in the exponent p=3 for all three walls in the limit 

u
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ψ→0; Figures 13. 
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Fig. 1: The basic geometry of the 
two wire model. 

Fig. 2: The equilibrium magnetic 
surfaces. 

Fig. 3: The starting surface and the 
intercepting planes. 

 
Fig. 4: The width w of stochastic layer as a function of 
amplitude δ of the quadrupole perturbation. 

Fig. 5: Scaling of φ0 with uψ for unperturbed 
axisymmetric divertor. 

 

Fig. 6: Scaling of φLOSS with uψ for unperturbed 
axisymmetric divertor; wall 1 (red), wall 2 (green), 
wall 3 (blue). 

Fig. 7:NB(φ)/N0 vs 0 ln( ) /p uψψ  for wall 1for uψ/ψs 
= 1E-2,9E-3,…,7E-5. 
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Fig. 8: The universal constant g1 for scaling of NB(φ). Fig. 9: Phase portrait of the perturbed axisymmetric 

divertor for high perturbation. 

 
Fig. 10: Scaling of ΦLOSS for perturbed axisymmetric 

divertor; wall 1 (red), wall 2 (green), wall 3 (blue). 
Fig. 11: Scaling of NB(φ) for wall 2 for high 

perturbation in the limit uψ→0. 

 
Fig. 12: Scaling of ΦLOSS for perturbed axisymmetric 

divertor; wall 1 (red), wall 2 (green), wall  3 (blue). 
Fig. 13: Scaling of NB(φ) for wall 3 for low 

perturbation in the limit uψ→0. 
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