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I. Introduction 

Disruptive events still represent one of the main concerns for the protection of in-vessel 

components of large size tokamaks, imposing several constraints on the design of the next 

step experimental devices such as ITER and DEMO. This work aims at summarizing the 

efforts in the development of an innovative machine learning approach, based on a generative 

model, towards the implementation of a disruption prediction and avoidance system. To this 

end, a general-purpose tool based on the Generative Topographic Mapping (GTM) 

algorithm [1] has been developed [2] and is being upgraded adding new features for a more 

advanced investigation of the mapped parameter space. GTM performs an unsupervised 

mapping from a low dimensional latent space, which is usually assumed to be two or three 

dimensional for visualization purposes, into the high dimensional original data space through 

radial basis functions, preserving the topology of the data space. This means that operating 

points close to each other in the data space will be mapped still close in the latent space. The 

algorithm produces a density model defining probability distributions over the data and the 

manifold properties, providing at the same time a quantification of the uncertainty of the 

model fitted to the data.  

In addition to some global 0-D plasma parameters, where some of them have already been 

employed for disruption prediction purposes in the past, the original multidimensional space 

has been described by a set of dimensionless, machine-independent, plasma features. These 

latter have been synthesized extracting the information associated to 1-D spatial distribution 

of kinetic quantities and radiated power, which are suitable to describe several physics 

mechanisms characterizing disruptions and allow a more robust extrapolation to operational 
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domains outside the training one (and, potentially, to other tokamaks). Moreover, these 

plasma profile indicators have proved to be very promising for disruption avoidance [3].  

In this paper, the potential of the GTM machine learning tool is discussed emphasizing its 

effectiveness for the investigation of the JET operational space where the relevant physics 

takes place [4]. Typical patterns, describing different processes and characterizing different 

types of disruption, have been compared for different scenarios developed at JET with the 

ILW, extending the analysis presented in [5] to more recent high-power experiments carried 

out in 2016. Moreover, the proposed approach allows us to monitor the disruption dynamics, 

identifying often well in advance the causes of the discharges destabilization, coherently with 

the physics mechanisms leading to disruptions. The paper will discuss how the imminence of 

the disruption can be linked to the proximity of its trajectory to the operational boundaries 

appearing in the 2-D parameters space.  

II. Machine Learning Workflow 

In the typical machine learning approach, the first step is the construction of a reliable 

database [6] and the proper selection of the discharge phases of interest for the study: in this 

paper the analysis has been mainly focused on the flat-top phase of the plasma current.  In 

order to effectively extract the information contained in the raw signals, a feature engineering 

approach has been combined with the definition of physics-based indicators related to spatial 

and/or temporal information, such as the time evolution of the so called peaking factors of 

temperature, electron density, and radiation profiles [3]. In particular, two features have been 

synthesized from the radiation distribution in the poloidal plane, basically decoupling the 

contribution of the core with respect to the contribution of the divertor region. Other three 

dimensionless parameters have been integrated in the final dataset: the internal inductance, as 

representative of the current density profile; the fraction of radiated power with respect to the 

total input power, which has the function to connect a spatial information (related to the 1-D 

profile of the radiation) with the entity of the radiation collapse; the safety factor on the 

magnetic axis, which is connected to the presence of the resonant surface for q=1 and the 

sawtooth crashes due to the instability of the internal kink mode (m=1, n=1).  

Data for training the GTM model have been selected from the ITER Like Wall (ILW) 

experimental campaigns performed on JET from 2011 to 2013. In particular, 70 regular 

terminations and 89 disrupted shots have been selected. These latter are mostly flat top 

disruptions, not terminated by massive gas injection. The selection of the training set has been 

performed maximizing the variety in terms of disruption types and experiments.  
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Making use of a tool (DIS_tool) [6], the main precursor phases of the disrupted discharges 

have been investigated in detail, determining, among others, also the so-called Reference 

Warning Time (RefWT) that corresponds to the start of the chain of events leading to 

disruption. The unstable phase of the disrupted discharges has been assumed to extend from 

this reference time to the disruption time, whereas all the flat top phase of regularly 

terminated discharges has been used to describe the non-disruptive part of the operational 

space. Moreover, all the “stable” phase of disruptive discharges belonging to the training set 

has been used to optimize the parameters required for the classification and the definition of 

an alarm. The resulting GTM of the operational space of JET, reported in Figure 1-a, is 

colored on the basis of the node composition, where the modes of the posterior probability 

corresponding to the input 7-D feature vectors are projected.  As can be seen, a well-defined 

separation between the two regions representing the disruptive (red) and non-disruptive 

(green) classes can be recognized in the 2-D latent space. The information contained in the 

map can be exploited both for operational boundary studies and for disruption prediction and 

avoidance purposes. Indeed, the temporal evolution of the operative point during the flat top 

of a discharge can be projected on the map and a binary classification problem can be 

modeled for the separation of the disruptive and non-disruptive classes. In particular, a class 

membership can be defined as a function of time (see Figure 1-b), reflecting the probability of 

the operating point of belonging to one of the two classes. Furthermore, by using the 

information provided by the tracking of the discharge on the map, it is possible to define an 

alarm criterion, with very high performance on an independent test set selected in the same 

campaigns [7]. 

III. Generalization to high power experimental campaign 

In this paper, we explored the potential of the obtained GTM map to generalize to the recent 

high power experimental campaign carried out in 2016.  

In Figure 1-a, the trajectory of a disrupted discharge (#92221), belonging to such campaign, is 

reported, where a gradually changing color scale is used to show the temporal evolution of the 

discharge, from the lighter point at the beginning of the considered phase to the darker point 

that corresponds to the disruption time. Figure 1-c reports the seven parameters provided as 

input to the GTM where it is possible to identify the destabilization caused by an impurity 

influx. This makes the trajectory evolve from the non-disruptive (green) to the disruptive (red) 

region, initially following closely the boundary separating them, to penetrate further inside the 

disruptive region in the final phase, up to the onset of a locked mode and the final mitigation 

45th EPS Conference on Plasma Physics P2.1049



by Massive Gas Injection. Correspondingly, the disruptive (red) class membership jumps 

from low to very high values. As can be noted, it is possible to detect the onset of a disruptive 

behavior much in advance with respect to typical final precursors as the locked mode. It is 

worth mentioning that, what is being detected is consistent with the physics mechanisms that 

are destabilizing the discharge and the preliminary analysis confirms that it is possible to 

recognize similar patterns even if plasma scenarios and plasma current levels are quite 

different. 

 

Figure 1 - a) GTM of the 7 plasma parameters: green clusters refers to the regularly terminated 

discharges, red clusters refers to the unstable phases of the disrupted discharges. On the map the 

trajectory of disrupted discharge # 92221 (black line); b) Class member functions of non-disrupted (green) 

and disrupted (red) classes; c) Time evolution of the 7 plasma parameters used to build the GTM. The 

vertical dashed lines in b) and c) correspond to the time of the influx of W and other impurities (purple), 

and the time of the locked mode onset (yellow). 
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