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SIESTA is a recently developed [1] MHD equilibrium code that has been designed to per-
form fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic
configurations. It is an iterative code that uses the solution previously obtained by the well-
known VMEC code [2] (for the same problem) to provide an Eulerian background coordinate
system and an initial guess of the equilibrium solution, from which the iteration starts. Since
VMEC assumes well-defined closed magnetic surfaces, the solution that VMEC provides pro-
vides a good, non-singular, polar-like generalized coordinate system. But in contrast to VMEC,
SIESTA does not assume the existence of closed magnetic surfaces. Thus, the final equilibrium
solution that SIESTA converges too may include other magnetic topologies such as magnetic
islands and stochastic regions. Magnetic flux and mass conservation are the only constraints im-
posed on the solution. Numerically, SIESTA iterates through a series of plasma displacements

& while it looks for a minimum of the total MHD energy, given by:
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The minimum energy state (i.e., equilibrium) is obtained when the displacement satisfies F(§) =
dW /dE = 0, where the ideal MHD force is F = J x B — Vp. The displacement required is ob-
tained iteratively, by applying a Newton method and solving the associated linear problem by a
combination of preconditioning and iterative algorithms such as GMRES, among others.

In its original implementation back in 2010, SIESTA addressed only fixed-boundary prob-
lems. That is, the shape of the plasma edge was fixed and equal to the one obtained by the
VMEC code (and therefore, a magnetic surface), remaining unchanged as the solution itera-
tively converges to equilibrium. This fixed boundary condition has somewhat restricted the pos-
sible applications of SIESTA in the past, limiting it to problems in which a possible variation
of the plasma boundary was not of interest. In order to circumvent these limitations, SIESTA
has been recently extended to deal with free-plasma-boundary problems [3], opening up the
possibility of addressing situations in which the plasma boundary is perturbed.

The way in which the extension has been done combines two elements. First, the computa-

tional domain has been extended outwards of the plasma, with the possibility of including (if
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desired) all the volume available up to the vacuum vessel. The only requirement that must be
satisfied is that no coil is included. The extension of the domain has also required the extension
of the background coordinate system all the way to the boundary, since it is no longer provided
by the VMEC solution. Several techniques have been applied to build such coordinate system,
including 1) the extrapolation of a selected set of poloidal rays of the VMEC solution until
they intersect with the boundary; 2) the rearrangement of these intersections to avoid crossings
that might lead to singularities/non-differentiability of the coordinate system; and 3) the proper
partitioning of the poloidal rays to define new radial-like surfaces in the intermediate space
between the plasma and the boundary. Exact details about how all these procedures have been
implemented can be found in Ref. [3].

Secondly, an initial guess for the magnetic field and the plasma pressure must also be pro-
vided over the extended region, so that SIESTA can iterate from it. In regards to the magnetic
field, it is obtained by solving:
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over the extended volume. Here, Jymec is the current density provided by VMEC and A is
the vector magnetic potential, from which B is obtained by using B = V x A. The boundary
conditions are given by prescribing the values of the vector potential A at the extended boundary

and very close to the origin. These are estimated by directly integrating Biot-Savart’s law,
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and adding to it the contribution to the vector potential originating from the currents flowing
in the external coils. Regarding the pressure, the VMEC pressure solution is considered in the
plasma region while a finite, fast-decaying pressure profile is used in the extended volume be-
tween the plasma and the boundary. This non-zero pressure is required in the extended volume
to avoid the possibility of having non-zero plasma displacements that leave the total system
energy unchanged, which would lead to a singular Hessian for the numerical problem that com-

plicates the convergence of the iterative solvers in SIESTA.

Application of SIESTA to W7-X bootstrap current scenarios

The free-boundary capabilities of SIESTA have been applied to several scenarios for con-
trol of the bootstrap current in the W7-X stellarator. W7-X relies on a vacuum magnetic island
chain (the 5/5 island) that sits just outside of the plasma edge to control the outflow of parti-
cles and energy toward its divertor. Self-generated bootstrap currents may, particularly at low

to mid densities, lead to a deterioration of this topology [5]. Although some studies using the
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VMEC+EXTENDER tool [6] have considered ECCD to compensate these currents and main-
tain the topology and location of the 5/5 island, it is difficult to predict the consequences of
these schemes inside of the plasma. The reason is that EXTENDER uses the so-called casing
principle to estimate the total magnetic field in the region between the plasma edge and the vac-
uum vessel, but the result is not a self-consistent ideal MHD equilibrium. Here, we show that
SIESTA can be useful to determine in which cases this approach may not be sufficiently good.
The W7-X scenario examined corresponds
to a medium-density W7-X plasma in the a)
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rent is estimated with the NTSS code [8]
after considering appropriate sources (see o) . d)

Fig. 1, frames a) and b)). Plasma beta is in-

creased to about 2% and a significant varia-

tion of the rotational transform is observed.
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signals the plasma edge, s = 0, the magnetic

axis). In principle, the VMEC+EXTENDER Figure 1: a) estimated bootstrap current density

field should not show any islands inside of the and b) rotational transform for the free-evolving

plasma due to the details of its approach to case at various times, Poincare plots (at toroidal

the problem. The fact that it does is in itself plane ¢ = 0) computed for the VMEC+EXTENDER
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rather puzzling [7]. When SIESTA is applied magnetic field at times c) t = 6s and d) Os, and

. . forthe SIESTA field at times e) t = 6s and f) t = 110s.
to the same problem, the resulting field is very

similar to the VMEC+EXTENDER solution, although additional island chains appear inside the
plasmas. They are small, though, so a relatively low impact on confinement should be expected.

The same scenario has also been analyzed after including off-axis ECCD to bring the net
toroidal current to zero and compensate the bootstrap current effect outside of the plasma. Both
EC power deposition and current drive were calculated with the TRAVIS code [9]. Since ECCD
provides a very localized drive, a very large negative current spike appears close to the center

that leads to a significant modification of the rotational transform. A large number of low-order
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rationals do enter the plasma, some even resonating at more than one location. The Poincare
plots computed with the magnetic field obtained by VMEC+EXTENDER show that the main
goal of the ECCD-compensation scheme is achieved. Indeed, the 5/5 island remains clamped
at its original location by the plasma edge. In this case, no significant island chain is seen within
the plasma, particularly at the later times. Some minor islands are appreciated at t = 6 seconds,
though. The magnetic field obtained by SIESTA in this case is rather different inside the plasma,
though, since a large stochastic region is found at the center. This region corresponds with the
location where lower-order rationals accumulated according to the rotational transform profile,
suggesting that Chirikov’s overlapping criterion is probably violated there. One should thus ex-
pect that plasma profiles would flatten across that region, probably impacting core confinement.
These results suggest that broader deposi-

tion profiles might be required to drive a less ) J— )

peaked toroidal current density near the axis
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in the scenarios examined, whilst still keeping

the net toroidal current close to zero. The op-
timization of the deposition profiles required

might be possible with ECRH, but is outside

of the scope of this work.
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