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Introduction

Plasma disruption is one of the crucial phenomena in a tokamak fusion reactor. Be-
cause the disruption causes serious impact to the reactor, it is necessary to elucidate and
control the disruption to realize nuclear fusion reactor. However, its physical mechanism
is not clearly identified yet, so there are some studies trying to predict the occurrence of
disruptions using experimental data [1, 2, 3]. Those approaches are called data-driven
science, and many of them use machine learning method to extract information from
data.

Now we focused on the importance of selection of input parameters and introduced
“sparse modeling” idea to select the optimal input parameters. The present research is
conducted as follows: first, a dataset using experimental data in JT-60U is prepared.
Second, a disruption predictor is constructed using linear SVM as a 2-class classifier.
Finally, the optimal combination of input parameters is searched using “K-sparse ex-

haustive search”, which is a kind of sparse modeling.

Construction of dataset

In the present research, the machine learning model was trained and tested using
high-beta plasma experimental data in JT-60U. The data was separated into 2 cases, i.e.,
non-disruptive and disruptive. The dataset includes 69 non-disruptive and 54 disruptive
cases. In Table 1, 17 parameters used in the present research are shown. We selected
10 plasma parameters considered to be related to disruption, and not only instantaneous
values but also time derivative values are used for 7 parameters. And for each discharge,
the base time was defined: For the non-disruptive cases, we chose the base time to be
the moment when the normalized beta is the highest while for the disruptive cases, we
selected the moment when the current quench started. The values of these plasma pa-

rameters are sampled in the intervals of 5 ms before the base time, as shown in Fig. 1.
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Table 1: List of the plasma parameters obtained from each

shot. - Data used for training obtained from #49348
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Name of parameter Expression &, % e < e L
Plasma Current [MA] I, ; os - xxmx*
Normalized beta BN S o =
Poloidal beta B s | e N
Plasma internal inductance i 2l e,
Safety factor at 95% of poloidal flux q95 .
Plasma triangularity ) N i
Plasma elongation K s -
Mode lock amplitude (n = 1) [mT] |B=1) T iesesesecesesceseceiences
The ratio of the plasma density to the fgw 18— : —
Greenwald density limit =ne/ngw x 104 R
The ratio of the radiated power to the fraq 8o/ coe coe
total input power = Prad/Pinput 00
Normalized beta time derivative dpn/de Fors| : S
Poloidal beta time derivative dpp/dt Fosof ; .
Plasma internal inductance time dl;/d¢ = e
derivative 6350 6375 6400 etlzn?e[ms]e4so 6475 6500 6525
Safety factor at 95% of poloidal flux time dqgs/d¢
derivative Figure 1: Example of experimental data
Plasma elongation time derivative dx/di used for training and testing the model.
Mode lock amplitude (n = 1) time d| B?Zl |/dt The solid line shows the moment at which
derivative the current quench occurred. The data
The ratio of the plasma density to the dfgw/d¢ was sampled every 5ms and 20 points

in the range indicated by the dotted line

Greenwald density limit time derivative were used for training.

Support vector machine

Support vector machine (SVM) is one of machine learning methods, and it works with
labeled data x € R? and its label y € {—1,1}. In the present research, linear SVM was used
as 2-class classifier to divide discharges into 2 classes, that is, non-disruptive and disrup-
tive, respectively. The conceptual basis of the SVM is to find a hyperplane that divides
data distributed in a multidimensional space into labeled sub-spaces. In the linear SVM,

the hyperplane is represented as f(x) =w-x +b.

Sparse modeling by K-sparse exhaustive search

In order to select the optimal combination of input parameters, the concept called
“sparse modeling” was introduced using “K-sparse exhaustive search” (ES-K) [4]. In ES-
K, all possible combinations of parameters are exhaustively searched assuming that the
optimal combination consists of K parameters, that is, yCx combination to take the K
from the N parameters are compared each other for each K.

To compare combinations, all combinations must be scored according to the accuracy
of the separation using the combination of parameters. However, there is only finite data
we could use, so we conducted cross validation (CV). In CV, the dataset was separated

into 2 parts, training data and testing data. Based on training data, the separation of
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data according to the labels is established and it is evaluated using testing data in order

to estimate the separation of actual data using finite data.

Calculation

In the training procedure, all training data is treated as a set of instantaneous values
while in the testing procedure, each discharge is judged disruptive or not in chronological
order and once the discharge is judged to be disruptive, all remaining data is treated as
judged to be disruptive. With those procedures, the predictor is evaluated for each time
before the disruption occurs for each combination of input parameters. The predictor is

evaluated based on the following two indices, PSR and FAR.

Number of shot tly judged as di ti
Prediction Success Rate (PSR) = umber of shots correctly judged as disruptive

, (D

Total number of disruptive shots

False Alarm Rate (FAR) = Number of shots incorrectly :judgec'i as disruptive. @2
Total number of non-disruptive shots

In order to compare combinations, the distance from the point where PSR = 100% and
FAR = 0% which is the most ideal performance is calculated. Small distance indicates

better performance of the predictor.

distance = /(100 - PSR)? + FAR? 3

Results and discussion

Figure 2 shows the results of ES-K. For each result of ES-K at 30 ms before the dis-
ruption occurs, the minimum distance is shown in the left figure, and the combinations
corresponding to each result of ES-K are shown in the right figure. The minimum dis-
tance takes the minimum value at K = 6, the parameters used here were |B;‘=1|, faw,
dl;/dt, dx/dz, dIBl’}zll/dt, dfgw/dt. Also, the minimum distance changes little from K =3

to 8. The optimal combinations of K = 3,...,8 contain the common parameters, that is,

Results of ES-K-SVM @ 30ms before Disruption Cross validated performance of predictor at each time for each K
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Figure 2: The minimum distance at 30 ms before dis- Figure 3: Comparison of PSR (solid lines) and FAR
ruption occurs for each K and the combinations cor- (dashed lines) at each time for K = 1,...,6. The bold
responding to the results. The colors in the right di- black lines show the result obtained using all 17 pa-
agram show the weight of each parameters in the rameters. The right diagram shows the combinations
equations of separating hyperplane obtained by SVM. corresponding to the same colors in the left graph.
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B, faw,dIBE="1/dt.

The PSR and FAR for each time for the optimal combinations in ES-K for K =1,...,6
are shown in Fig. 3. The PSR of K = 6 is higher than others at around 50 ms before the
occurrence of the disruption, while the FARs of K =1,...,6 are almost same, but the FAR
obtained by all parameters is much higher than others.

In Fig. 3, the PSR using only d|B*~1|/d¢ to predict is shown. It grows quickly just be-
fore the occurrence of the disruption, less than 20 ms. On the other hand, the PSR using
dIBl’lel/dt and other parameters grows earlier than it. This result means that the rela-
tionships between dIBl’f:1 |/dt and other parameters have important information to predict
the disruption.

The two examples of discharges truly and falsely judged as disruptive are shown in
Fig. 4. In the right figure, dx/d¢ and dlB;‘zll/dt at the moment when the predictor judged
as disruptive are similar to the left one. This may be the reason why the discharge was
judged as disruptive. However, IBI’Z=1| in this discharge does not grow after the moment,
and finally, the discharge does not disrupt. This result suggests that the model that deals

with time series data may be able to prevent this type of false alarm.

Conclusions

In the present research, the disruption predictor based on linear SVM is constructed
using experimental data in JT-60U and the optimal combination of input parameters is
searched by K-sparse exhaustive search. As a result, the performance of the predictor
is improved by selecting input parameters, and three parameters, IBQZII, fow, dIBl’}le/dt,
are extracted as key parameters of disruption prediction with the present dataset. In

particular, the relationships between d|B?~!|/d¢ and other parameters seemed to be im-

portant.
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Figure 4: The examples of discharges truly and falsely judged
as disruptive. The moment when the predictor judged as dis-
ruptive is shown by red lines.



