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Introduction

Plasma disruption is one of the crucial phenomena in a tokamak fusion reactor. Be-

cause the disruption causes serious impact to the reactor, it is necessary to elucidate and

control the disruption to realize nuclear fusion reactor. However, its physical mechanism

is not clearly identified yet, so there are some studies trying to predict the occurrence of

disruptions using experimental data [1, 2, 3]. Those approaches are called data-driven

science, and many of them use machine learning method to extract information from

data.

Now we focused on the importance of selection of input parameters and introduced

“sparse modeling” idea to select the optimal input parameters. The present research is

conducted as follows: first, a dataset using experimental data in JT-60U is prepared.

Second, a disruption predictor is constructed using linear SVM as a 2-class classifier.

Finally, the optimal combination of input parameters is searched using “K-sparse ex-

haustive search”, which is a kind of sparse modeling.

Construction of dataset

In the present research, the machine learning model was trained and tested using

high-beta plasma experimental data in JT-60U. The data was separated into 2 cases, i.e.,

non-disruptive and disruptive. The dataset includes 69 non-disruptive and 54 disruptive

cases. In Table 1, 17 parameters used in the present research are shown. We selected

10 plasma parameters considered to be related to disruption, and not only instantaneous

values but also time derivative values are used for 7 parameters. And for each discharge,

the base time was defined: For the non-disruptive cases, we chose the base time to be

the moment when the normalized beta is the highest while for the disruptive cases, we

selected the moment when the current quench started. The values of these plasma pa-

rameters are sampled in the intervals of 5 ms before the base time, as shown in Fig. 1.
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Table 1: List of the plasma parameters obtained from each
shot.

Name of parameter Expression
Plasma Current [MA] Ip
Normalized beta βN
Poloidal beta βP
Plasma internal inductance li
Safety factor at 95% of poloidal flux q95
Plasma triangularity δ
Plasma elongation κ

Mode lock amplitude (n = 1) [mT] |Bn=1
r |

The ratio of the plasma density to the
Greenwald density limit

fGW
= n̄e/nGW

The ratio of the radiated power to the
total input power

frad
= Prad/Pinput

Normalized beta time derivative dβN/dt
Poloidal beta time derivative dβP/dt
Plasma internal inductance time
derivative

dli/dt

Safety factor at 95% of poloidal flux time
derivative

dq95/dt

Plasma elongation time derivative dκ/dt
Mode lock amplitude (n = 1) time
derivative

d|Bn=1
r |/dt

The ratio of the plasma density to the
Greenwald density limit time derivative

d fGW/dt

Figure 1: Example of experimental data
used for training and testing the model.
The solid line shows the moment at which
the current quench occurred. The data
was sampled every 5 ms and 20 points
in the range indicated by the dotted line
were used for training.

Support vector machine

Support vector machine (SVM) is one of machine learning methods, and it works with

labeled data xxx ∈Rd and its label y ∈ {−1,1}. In the present research, linear SVM was used

as 2-class classifier to divide discharges into 2 classes, that is, non-disruptive and disrup-

tive, respectively. The conceptual basis of the SVM is to find a hyperplane that divides

data distributed in a multidimensional space into labeled sub-spaces. In the linear SVM,

the hyperplane is represented as f (xxx)= www · xxx+b.

Sparse modeling by K-sparse exhaustive search

In order to select the optimal combination of input parameters, the concept called

“sparse modeling” was introduced using “K-sparse exhaustive search” (ES-K) [4]. In ES-

K, all possible combinations of parameters are exhaustively searched assuming that the

optimal combination consists of K parameters, that is, NCK combination to take the K

from the N parameters are compared each other for each K .

To compare combinations, all combinations must be scored according to the accuracy

of the separation using the combination of parameters. However, there is only finite data

we could use, so we conducted cross validation (CV). In CV, the dataset was separated

into 2 parts, training data and testing data. Based on training data, the separation of
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data according to the labels is established and it is evaluated using testing data in order

to estimate the separation of actual data using finite data.

Calculation

In the training procedure, all training data is treated as a set of instantaneous values

while in the testing procedure, each discharge is judged disruptive or not in chronological

order and once the discharge is judged to be disruptive, all remaining data is treated as

judged to be disruptive. With those procedures, the predictor is evaluated for each time

before the disruption occurs for each combination of input parameters. The predictor is

evaluated based on the following two indices, PSR and FAR.

Prediction Success Rate (PSR)= Number of shots correctly judged as disruptive
Total number of disruptive shots

, (1)

False Alarm Rate (FAR)= Number of shots incorrectly judged as disruptive
Total number of non-disruptive shots

. (2)

In order to compare combinations, the distance from the point where PSR = 100% and

FAR = 0% which is the most ideal performance is calculated. Small distance indicates

better performance of the predictor.

distance=
√

(100−PSR)2 +FAR2 (3)

Results and discussion

Figure 2 shows the results of ES-K. For each result of ES-K at 30 ms before the dis-

ruption occurs, the minimum distance is shown in the left figure, and the combinations

corresponding to each result of ES-K are shown in the right figure. The minimum dis-

tance takes the minimum value at K = 6, the parameters used here were |Bn=1
r |, fGW,

dli/dt, dκ/dt, d|Bn=1
r |/dt, d fGW/dt. Also, the minimum distance changes little from K = 3

to 8. The optimal combinations of K = 3, . . . ,8 contain the common parameters, that is,

Figure 2: The minimum distance at 30 ms before dis-
ruption occurs for each K and the combinations cor-
responding to the results. The colors in the right di-
agram show the weight of each parameters in the
equations of separating hyperplane obtained by SVM.

Figure 3: Comparison of PSR (solid lines) and FAR
(dashed lines) at each time for K = 1, . . . ,6. The bold
black lines show the result obtained using all 17 pa-
rameters. The right diagram shows the combinations
corresponding to the same colors in the left graph.
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|Bn=1
r |, fGW,d|Bn=1

r |/dt.

The PSR and FAR for each time for the optimal combinations in ES-K for K = 1, . . . ,6

are shown in Fig. 3. The PSR of K = 6 is higher than others at around 50 ms before the

occurrence of the disruption, while the FARs of K = 1, . . . ,6 are almost same, but the FAR

obtained by all parameters is much higher than others.

In Fig. 3, the PSR using only d|Bn=1
r |/dt to predict is shown. It grows quickly just be-

fore the occurrence of the disruption, less than 20 ms. On the other hand, the PSR using

d|Bn=1
r |/dt and other parameters grows earlier than it. This result means that the rela-

tionships between d|Bn=1
r |/dt and other parameters have important information to predict

the disruption.

The two examples of discharges truly and falsely judged as disruptive are shown in

Fig. 4. In the right figure, dκ/dt and d|Bn=1
r |/dt at the moment when the predictor judged

as disruptive are similar to the left one. This may be the reason why the discharge was

judged as disruptive. However, |Bn=1
r | in this discharge does not grow after the moment,

and finally, the discharge does not disrupt. This result suggests that the model that deals

with time series data may be able to prevent this type of false alarm.

Conclusions

In the present research, the disruption predictor based on linear SVM is constructed

using experimental data in JT-60U and the optimal combination of input parameters is

searched by K-sparse exhaustive search. As a result, the performance of the predictor

is improved by selecting input parameters, and three parameters, |Bn=1
r |, fGW,d|Bn=1

r |/dt,

are extracted as key parameters of disruption prediction with the present dataset. In

particular, the relationships between d|Bn=1
r |/dt and other parameters seemed to be im-

portant.

Figure 4: The examples of discharges truly and falsely judged
as disruptive. The moment when the predictor judged as dis-
ruptive is shown by red lines.
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