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Particle and heat transport in the core of the tokamak is dominated by turbulent transport,

and can be accurately described by gyrokinetics. Unfortunately, making predictions with high-

fidelity nonlinear gyrokinetic codes is computationally extremely expensive, in the order of 106

CPUs per radial point per time step. Fortunately quasilinear gyrokinetic models, have been very

successful in predicting particle and heat transport in tokamaks, successfully reproducing ex-

perimental profiles in many cases. As they are reduced models, they are typically many orders

of magnitude faster to run. One such code is QuaLiKiz, which has been validated against JET,

ASDEX-U and Tore-Supra profiles [1, 2, 3, 4]. While an impressive six orders of magnitude

faster than high-fidelity gyrokinetic models, it is still too slow for efficient scenario optimiza-

tion and realtime applications, demanding around ∼ 10 hours for 1s of JET evolution. Neural

networks can be used to create a surrogate model, which can then be evaluated within a few

microseconds while still accurately reproducing the results of the underlying model. As such,

neural networks are used in this work to sketch a pathway to real-time capable turbulent trans-

port modelling.

Neural Networks

Neural networks are nonlinear mappings, acting as universal approximators. The basic build-

ing block of a neural network is the neuron; an activation function f with a linear combination of

weights w and biases b, whose values are optimized or ’trained’ to match a desired input-output

mapping.
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Block diagram of a single neuron Schematic representation of a single neuron

In this work we use fully-connected Feed Forward Neural Networks. The neurons are orga-
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nized in in layers, the output of the neuron of each layer connected to the input of the neurons in

the next. As such, FFNNs are a simple matrix equation, albeit a non-linear one. They also has

an analytical derivative, up to the order of which the activation function can be differentiated.

These two features are essential for integration into rapid transport codes.
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A fully-connected Feed Forward Neural Network. Shown is a network with one hidden layer, four input
dimensions and a single output dimension. In principle a network can have many layers with a larger
amount of neurons, as well as more in- and output dimensions.

QLKNN + RAPTOR transport code

A proof-of-concept feed-forward neural network regression of QuaLiKiz ’QLKNN-4Dadi’

was trained[5] and an extended version ’QLKNN-4Dkin’ was integrated in the fast transport

modelling code RAPTOR [6]. The ensemble was shown to quite accurately reproduce H-mode

JET shot #73342 [6]. To further improve predictions for a wider amount of shots, we seek

a major extension of the proof-of-principle from 4D to 10D. A large database of 3.108 flux

calculations over a 9D input space generated with the QuaLiKiz code is used to extend the orig-

inal input space of ion temperature gradient R/LTi , ion-electron temperature ratio Ti/Te, safety

factor q and magnetic shear ŝ with the electron temperature gradient R/LTe , density gradient

R/Ln, normalized minor radius r/R, collisionality ν∗ and effective ion charge Ze f f . The input

ranges were chosen as a non-equidistant grid, focussing on experimentally relevant regimes.

This database was then used to train neural networks, using a methodology aimed at ensuring

consistency with known physical constraints, which was found essential to reproduce plasma

profiles, especially when simulating multiple time-steps. Finally, a 10th dimension, ExB shear,

is added in post-processing using a new turbulence quenching rule [7].

Physically consistent neural network training

The used neural network training methodology used in this work seeks to match the following

features of the underlying model:
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1. Sharp instability thresholds

2. No spurious positive flux in stable region

3. Matching thresholds for all transport channels

The behaviour of the resulting neural network strongly depends on the cost function used in

the gradient descend optimization during training. In general the cost function C has two terms:

a term for the goodness-of-fit Cgood and a term to regularize the regression Cregu. We expand

this function with a term to strongly punish spurious flux in the stable zone Cstab.

C =Cgood +Cregu +Cstab

1. and 2. are enforced by punishing goodness-of-fit only for the points in the unstable region.

Naturally, Cstab is only non-zero for points in the stable region. Mean Square Error is used as

the goodness-of-fit metric, and L2-norm and early stopping are used to regularize the network.

This can be summarized as follows:

Cgood =
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For all n QuaLiKiz predictions QLK and the corresponding neural network prediction NN for

each point in the database. The training hyperparameters regularization scale λL2, stability pun-

ish scale λstab, stability punish threshold cstab are then optimized with a simple hypergrid scan.

Application in RAPTOR

The trained networks have been embedded in the RAPTOR transport code [8]. A comparison

between QLKNN-4Dkin and QLKNN-10D on JET shot #73342 can be found in the following

figure:

45th EPS Conference on Plasma Physics P2.1086



QLKNN-10D and RAPTOR are able to reproduce the steady state flat-top phase of H-mode JET shot
#73342. For this shot, QLKNN-10D clearly performs better than QLKNN-4Dkin.

In the 4-channel simulation the transport equations for ψ , Te, Ti, and ni were solved simulta-

neously. Boundary condition of kinetic profiles were prescribed at ρ = 0.85. The source profiles

and equilibria were externally prescribed. It should be noted that for this version of QLKNN-

10D Cstab = 0 and ν∗ is clipped to a maximum of 0.05. Improving performance of QLKNN-10D

for higher collisionality is currently under investigation.

In this work we have presented methodology of training and validating these neural networks,

and shown the validity of using these networks in a transport code. The speed of the networks

combined with RAPTOR allow for transport simulations at a speed that is unprecedented, and

opens new avenues in the modelling of fusion experiments.
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