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Introduction

Ray propagation of electromagnetic and sound waves in turbulent media takes an important

role in a varied scope of research areas, ranging from astronomy and free-space communica-

tions to the scattering of rf waves in plasmas [1]-[3]. Here, a quasilinear (QL) approach for ray

propagation in weakly turbulent media is formulated, which relies on the Hamiltonian form of

the ray equations and makes use of a second-order expansion (in the medium and ray fluctua-

tions) of the dispersion relation and ray equations, in order to integrate the ensemble-averaged

ray and its root-mean-square (rms) spreading. The QL formalism is validated against Monte

Carlo (MC) calculations and, when possible, verified using analytical predictions. For this, a

single random mode and a multimode isotropic turbulent spectrum were used as examples.

General quasilinear formalism for ray tracing in random media

The local dispersion relation for a wave with frequency ω propagating in a given medium

can be written as:

D(ω,r,k)≡ ω−ω(r,k) = 0 ,

where r≡ (r1,r2,r3) and k≡ (k1,k2,k3) are the canonically conjugate coordinate and wave vec-

tor. From the above equation it is possible to write the ray equations in their explicit Hamiltonian

form:
dri

dt
=

∂ω(r,k)
∂ki

and
dki

dt
=−∂ω(r,k)

∂ ri
,

where t some time-like integration variable along the ray, and there is an r dependence in ω(r,k)

that enters through the density of the medium ne(r). The quantities are split into an average

〈ne(r)〉, 〈r〉 and 〈k〉 plus a fluctuating value δne(r), δr, and δk, the latter much smaller than the

former. The ray equations can then be expanded up to, and including, second-order terms in the

fluctuating quantities, yielding expressions for the average coordinates d〈ri〉/dt and wave vec-

tors d〈ki〉/dt, where (bearing in mind the first order fluctuations vanish by construction) only the

zeroth and second order terms on the fluctuations survive. Hence, in what is viewed as a QL ap-

proach, the average ray is not the same as the ray one would have if there were no fluctuations.

The equations for the evolution of the second-order averaged quantities 〈δ riδ r j〉, 〈δkiδk j〉,
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Figure 1: Average ray trajectories 〈y〉 vs. 〈x〉 and their perpendicular rms spreadings σ⊥ from the QL formalism

(red) vs. a MC calculation with N = 100 rays (black) for three distinct initial launching angles (parallel, oblique

and perpendicular to the turbulence direction x), superimposed on a single-mode random background. QL results

are presented in the form 〈r〉±σ⊥.

〈δ riδk j〉, 〈δ riδne(〈r〉)〉, 〈δkiδne(〈r〉)〉, 〈δ ri∂δne(〈r〉)/∂ r j〉, and 〈δki∂δne(〈r〉)/∂ r j〉 can be

obtained, whilst ensemble averages such as 〈δne(〈r〉)δne(〈r〉)〉 or 〈δne(〈r〉)∂δne(〈r〉)/∂ ri〉 can

be directly computed from the fluctuation model and are evaluated at the average coordinate 〈r〉.

The implementation of this QL approach gives rise to a formally closed (albeit infinite) set of

equations that can be integrated to obtain the expressions for 〈ri〉, 〈ki〉 and all the second-order

terms above. In fact, an infinite recurrence involving higher order derivatives of the density

perturbation δne appears, which raises the need for some effective truncation in practical im-

plementations (for more insight see [4]).

Rays in homogeneous media with single-mode random fluctuations

The simplest example to consider, also in view of the verification and validation of the QL ap-

proach, is that of a single mode propagating with a given wavenumber q along a given direction,

say r1, and with an amplitude δne0:

δne(r)≡ δne(r1)≡ δne0 cos(qr1 +φ) , (1)

where q � k (to preserve the consistency with the geometrical optics approach) and φ is

a random phase distributed uniformly between 0 and 2π . In what follows, x, y, κx and κy

and τ are normalized quantities related to r1, r2, kx, and ky, respectively, while σ⊥ repre-

sents the spreading of the ray pencil in the direction perpendicular to the average ray [4].

45th EPS Conference on Plasma Physics P2.4002



<x>2+<y>2

0 100 200 300 400
τ0

100

200

300

400

<κx>

0 100 200 300 400
τ0.0

0.2

0.4

0.6

0.8

1.0

<κy>

0 100 200 300 400
τ0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: QL formalism (solid) vs. a MC cal-

culation with N = 100 rays (dashed) for θ0 =

0deg (green), θ0 = 15deg (grey), θ0 = 25o

(cyan), θ0 = 35o (magenta), θ0 = 45o (black),

θ0 = 55o (orange), θ0 = 65o (yellow), θ0 = 75o

(brown), and θ0 = 90o (red) and for a Nq ×

Nθ = 100×100 multimode isotropic turbulent

spectrum: rms travelled distance
√
〈x2〉+ 〈y2〉

and ensemble-averaged wave-vector compo-

nents 〈κx〉 and 〈κy〉 as functions of time τ .

Results for the ray trajectories launched in a plane with

initial directions parallel, perpendicular, and oblique to

the direction of the turbulence wave vector are com-

pared in Fig. 1 with MC calculations.

Rays in homogeneous media with isotropic spectra

of random fluctuations

An isotropic turbulence spectrum is now considered

corresponding to a flat distribution in wave number

with Nq×Nθ modes, and a prescribed cut-off qmax:

δne(r)≡ δne(x,y)≡
δne0√
NqNθ

Nq

∑
r=1

Nθ

∑
s=1

cos(qr cosθsx+qr sinθsy+φrs) ,

where q1 = 0, qNq = qmax� k, θ1 = 0, θNθ
= 2π , and

the φr,s are random phases distributed uniformly be-

tween 0 and 2π . In Fig. 2 are shown the distance trav-

elled by the ray and the emsemble-averaged wave vec-

tor components for different initial propagation angles.

The correspondent ray trajectories and the rms spread-

ings for two different initial propagation directions are

show in Fig. 3, once again compared with the MC re-

sults.

Conclusions

A new QL formalism has been developed to de-

scribe the propagation of rays in random media. Keep-

ing second-order terms when emsemble-averaging af-

ter expanding the dispersion relation and ray equa-

tions leads to a slow drift of the average ray with re-

spect to its unperturbed trajectory. Overall, there is a

good agreement between the QL and MC results, par-

ticularly for the distance travelled by the average ray,

its perpendicular rms spread and the averages of the

wave-vector components. This approach comes as an
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Figure 3: Average ray trajectories 〈y〉 vs. 〈x〉 and their perpendicular rms spreadings σ⊥ from the QL formalism

(red) vs. a MC calculation with N = 100 rays (black) superimposed on a Nq×Nθ = 100×100 multimode isotropic

random background. QL results are presented in the form 〈r〉±σ⊥ for two distinct initial launching angles.

efficient alternative to MC calculations and, while similar to the so-called statistical ray trac-

ing [2], it appears to be much easier to implement in the case of more complex geometries or

dispersion relations (as when tracing rays in tokamaks). The eventual limitation of the QL for-

malism arises due to the existence of a downward recursion such that a given order derivative

of medium fluctuations depends on the derivatives immediately one order higher. Hence, for

practical purposes, the system has to be truncated somehow. Concerning this, it has been shown

that not only QL calculations do converge to the correct results when increasing the order of

truncation, but also that for a realistic scenario like the one in Fig. 3 convergence happens as

early as neglecting fourth order derivatives and higher in the recurrence [4]. The QL formalism

showed to be particularly robust on the ensemble average of ray trajectories and the rms width

resulting from spreading of the ray pencil in the direction perpendicular to the average ray, and

it also showed very good results on the ensemble averages of the wave-vector components.
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