
Global modes of gradient drift instability in Hall plasma thruster

N.A. Marusov1−3, E.A. Sorokina1,2, V.P. Lakhin1,2, V.I. Ilgisonis4,2, A.I. Smolyakov5,2

1 NRC "Kurchatov Institute", Moscow, Russia
2 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

3 Moscow Institute of Physics and Technology, Moscow region, Russia
4 State Atomic Energy Corporation ROSATOM, Moscow, Russia

5 University of Saskatchewan, Saskatoon, Canada

Plasma in coaxial Hall thrusters is subject to a lot of instabilities driven by azimuthal E×

B electron flow [1, 2]. Such instabilities directly affect the operational capabilities of plasma

thrusters due to their impact on anomalous electron mobility across the external magnetic field

[1, 3, 4]. In this paper the instability analysis of global electrostatic modes in inhomogeneous

partially magnetized plasmas (unmagnetized ions and magnetized electrons) is performed in

the framework of two fluid model. Assuming that plasma is inhomogeneous along the axial

direction of ions acceleration, x, such modes can be described by the following eigenvalue

equation
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Here Ψ is the eigenfunction of the perturbed electrostatic potential, φ ′ (E′ = −∇φ ′): φ ′ =

∑Ψ(x)exp(−iωt + ikyy); ω and ky are the frequency and azimuthal wave-number of oscilla-

tions, respectively; κ(n,B)= d ln(n(x),B(x))/dx are the parameters characterizing axial gradients

of plasma density and magnetic field; ωlh =
√

ωBeωBi is the lower-hybrid frequency, ωB(e,i) are

the electron and ion cyclotron frequencies; ωE = kyVE , VE =−(cE/B)ey is the velocity of the

azimuthal E×B-electron flow and
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Equation (1) describes electrostatic oscillations in the frequency range ωBi� ω � ωBe prop-

agating strictly across the external radial magnetic field B = B(x)ez and includes the effects of

electron inertia and shear of equilibrium electron flow. For the derivation of the Eq. (1) see, e. g.,

Ref. [5].

To formulate the eigenvalue problem we use the zero boundary conditions for the perturbed

plasma potential on electrodes, Ψ(0) = Ψ(d) = 0 (x = 0 corresponds to the location of anode

and x = d – to cathode), and consider, as an example, the profiles of plasma parameters for

SPT-100 plasma thruster obtained in simulations [6], approximating them by smoothed analyt-

ical curves. The resulting normalized profiles of the magnetic field, B(x), plasma density, n(x),
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and plasma potential, Φ(x), are shown in Fig. 1. Below the following absolute values of these

parameters are used: Bm = 200 G, nm = 0.5 ·1012 cm−3 and Φm = 300 V; and we consider xenon

atoms in the acceleration channel with the half-radius R = 4 cm and the length d = 2.5 cm.

Figure 1: Dependencies of B(x)/Bm, n(x)/nm and Φ(x)/Φm on normalized coordinate along the

thruster channel, x/d

Results of the numerical solution of the corresponding eigenvalue problem are shown in

Fig. 2. The spectrum of unstable eigenmodes, ω = 2π f + iγ , consists of five modes with fre-

quencies f ' 0.23÷ 0.67 MHz and azimuthal wavenumbers m = kyR = 1÷ 5 – see Fig. 2 (a).

All modes have the same axial structure of eigenfunctions – shown in Fig. 2 (b) – with the

predominant localization in the near anode region. This structure of eigenfunctions arises from

the local criterion of instability, which fulfills only near the anode for the considered plasma

profiles – see Ref. [7]. The stabilization of the shorter wave-lengths is provided by the inertia of

electrons [8].

Now we examine the behavior of the wave packet formed by the revealed unstable modes. Its

spatio-temporal dependence can be presented by means of function

Φb(y, t) =
5

∑
m=1

exp
[
−i(2π fm + i(γm− γ3))t + im

y
R

]
, (2)

entering into the perturbation of plasma potential in the form

φ
′(x,y, t) = Ψ(x)Φb(y, t)exp(γ3t).

Considering the dynamics of Φb instead of φ ′ we exclude the exponential growth of plasma

perturbations from the consideration focusing on the “internal structure” of the wave packet.

The time-evolution of function Φb in y = const cross-section is shown in Fig. 3. It is clearly

45th EPS Conference on Plasma Physics P2.4006



Figure 2: Eigenspectrum of unstable modes with different azimuthal wave-numbers, m = kyR,

(a); axial structure of eigenfunctions (b)

seen that the wave packet (2) relaxes to the beats formed by the most unstable modes m = 3 and

m = 4 with almost identical growth rates γ3 ' γ4. The frequency of the envelope of wave packet

equals 50 kHz, which is much less than the frequencies of single modes.

Figure 3: Time-dependence of function Φb in y = const cross-section. The amplitude is normal-

ized on unity. Dashed curve shows the envelope of the wave packet, Φb

To demonstrate the dynamics of the wave packet (2) in x = const cross-section we add formal

radial parabolic dependence on z: Φ∗b(y,z, t) = [z2
0−(z−R)2]Φb(y, t), providing zeroth values of

perturbations on the outer and inner walls of the acceleration channel. The contour lines of the

envelope of wave packet Φ∗b for different moments of time are shown in Fig. 4. One can see, that

at the linear stage of instability the wave packet forms a large-scale m∼ 1 structure rotating in

the direction of stationary electron drift with group velocity Vg ' 0.02VE . The characteristics of

the obtained beats, i.e.: the near anode localization,∼ 10 kHz frequency, low m, slow azimuthal
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Figure 4: Contour lines of the envelope of wave packet, Φ∗b, in x = const cross-section for

different moments of time, t: (a) 0.0, (b) 3.0 µs, (c) 6.0 µs. On figure the local Cartesian system

{y∗, z∗} is introduced in x = const plane

rotation in [E×B]-direction – are the same as for the quasicoherent macroscopic structures

observed in a variety of experiments with Hall thrusters, known as spokes – see, e.g., Ref. [9].

Thus, the gradient-drift instability can be regarded as the possible mechanism for the formation

of such structures in Hall plasmas.
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