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Here we would like to consider the conditions for existence of the electron-hole sound waves in a

semiconductor at cryogenic temperatures when electrons (light and of a negative charge) are degenerate

and one of the major unsolved problems of the superconductivity theory is determination of the static

potential of a point electron. Obviously, the sign of the electron potential in asuperconductive medium

must be opposite to that in a vacuum. This follows from the Bardeen-Cooper-Schrieffer theory, since the

Cooper electron pair can form only when the potential appears to be attractive for both electrons. Below,

we will show that in a electron-hole plasma of a semiconductor when the electrons are degenerate and

holes are not degenerate, i.e. when
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a weakly damped electron-hole sound wave with the speed
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can form in such a plasma . The electron-hole sound wave can be described by the following dispersion

relation [1].
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where the following oscillation spectrum comes from:
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Taking into account thatn− = n+, we can get the linear spectrum from .
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In a short range limit, when the inverse to relation is satisfied, we get
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The interaction potential of two electrons in a electron-hole plasma

The interaction potential of two electronsα andβ in a electron-hole plasma can be described by the

following equation [2]:
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According to the Eq. (3)
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hereVα is the speed of a test electron with the chargeeα producing the potentialφα at a pointr = 0

where the chargeeβ is located. Taking into account thatd~r/dt =Vα , it follows~r ↑↑Vα , Vα >VT+. As a

result, ateα = eβ = ewe will get
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wherex= cos(θ).

Let us analyse this expression in two limiting cases:

1) In ashort range limit at r ∼ 1
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the potential (12) will get the following view
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Figure 1: The sum of two potentials (13) and the potential (14) of two electrons in a degenerate electron-

hole plasma, hereR= r/rDe

MIN R1 R2 Rmin U(Rmin)/UD U(Rmin), eV UminL, eV UminL, K U(Rmin), K

1 33.85 66.36 50.46 -0.202 -0.053 6∗10−6 0.07 622

2 98.41 130.06 114.17 -0.166 -0.044 6.47∗10−6 0.0751 511

3 161.95 193.66 177.65 -0.147 -0.039 6.45∗10−6 0.0749 453

4 225.35 257.12 240.88 -0.134 -0.035 6.4∗10−6 0.0746 413

5 288.68 320.3 304.71 -0.125 -0.033 6.4∗10−6 0.075 385

Table 1: The potential wells

Analysis

It can be clearly seen that at a long range distances the potential has an opposite sign and decays slowly

as−1/r3 compared to that.

In a general case the Eq.(8) can be deduced to the following integral
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Having solved the integral (14), we get the following form of the potential shown in Fig.1, where the

integration till thek ≤ 1/rDi was performed. Here, we see the multiple minima revealing the quantum

nature of the phenomenon: many energy levels, see the Table 1. Here, for the existence of the energy

level the following condition must be satisfied :
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MIN R1 R2 Umax, eV n= 1 Emin1, eV n= N EminN, eV

1 33.85 66.36 -0.03235 1 −1.228·10−5 51 −512 ·1.228·10−5

2 98.41 130.06 - 0.0267 1 −1.2956·10−5 45 −452 ·1.2956·10−5

3 161.95 193.66 -0.0236 1 −1.29·10−5 42 −422 ·1.29·10−5

4 225.35 257.12 -0.0215 1 −1.2859·10−5 40 −402 ·1.2859·10−5

5 288.68 320.3 - 0.01997 1 1.298·10−5 39 −392 ·1.298·10−5

· · · · · · · ·

45 2812.6 2844.12 0.0072 1 1.306·10−5 23 −232 ·1.306·10−5

· · · · · · · ·

120 7538.75 7570.26 0.00362 1 1.307·10−5 16 −162 ·1.307·10−5

Table 2: Estimated energy levels of particles moving in a series of potential wells

U(Rmin)>UminL =
π2h̄2

4mea2 , (15)

herea - potential well width,UminL - its height [3].

Let us estimate the energy levels of particles moving in a series of potential wellsshown in Fig. 1. The

energy levels in a rectangular potential wells:

Eminn =
π2h̄2

2mea2n2,n= 1,2· · · ,N (16)

where the following condition must be satisfiedUmax> Eminn, hereS= (R2−R1) ·Umax, S - area of the

rectangular well with the widthR2−R1 and heightUmax.

In the following Table 2 the estimated energy levels are given for a series ofpotential wells.

Discussion of the results and quantitative estimations

We have observed asuperconductivity statein a semiconductor or in aelectron-hole plasmawith

thedegenerate electronsdue to the attractive forces between the electrons as a result of the exchange

effects through theelectron-hole sound waveby analogy to the phonon waves in a solid state.

Interaction between two electronsat the distances much larger than the Debye electron radius changes

its sign, i.e. becomesattractive, and decreases as 1/r3. This potential amplitude is much higher than

that, repulsive one, at the short distances and can lead to thebound state of two electrons(Cooper pair).
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