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1. The tomographic inversion problem 

Reconstructing the local plasma emissivity in the soft X-ray (SXR) range 0.1 – 20 keV can 

be very useful to access crucial information on particle transport, magnetohydrodynamic 

activity or impurity content in tokamaks. In particular, radiative cooling of heavy impurities 

like tungsten (W) could be detrimental for the plasma core performances of ITER and 

developing robust and fast SXR diagnostics is an essential issue to monitor the impurities 

and to prevent their central accumulation. 2D tomography is the usual method to access the 

local SXR emissivity of the plasma in a poloidal cross-section of the tokamak from line-

integrated measurements of two or more pinhole cameras. In the Line-of-Sight (LoS) 

approximation, the 𝑚𝑗 measurements of the j-th detector (in W.m-2) looking at the plasma 

through the camera aperture is given by the following line integral, after spatial discretization 

of the plasma 2D emissivity field in Np pixels: 

𝑚𝑗 = ∑ 𝑇𝑗𝑖𝜀𝑖

𝑁𝑝

𝑖=1

+ 𝜉𝑗 (1) 

where 𝜀𝑖 is the plasma emissivity (in W.m-3) in the i-th pixel filtered by the spectral response 

of the diagnostic, the transfer matrix element Tji contains the length (in m) of the j-th LoS in 

the i-th pixel and 𝜉𝑗 denotes systematic and statistical error such as electronic noise in the 𝑚𝑗 

measurements. This mathematically ill-posed and quite challenging problem is traditionally 

solved using the Tikhonov regularization, by adding a priori information on the emissivity 

distribution, which typically imposes smoothness of the reconstructed profile. The solution 

of Eq. 1 is then: 

𝜺 = ( 𝑻 
𝒕 . 𝑻 + 𝜆 𝑯)−1. 𝑻 

𝒕 . 𝒎 (2) 

where 𝑯  is a regularization operator and the parameter 𝜆  acts as a balance between 

overfitting of the measurements and over-smoothing of the solution. The minimum Fisher 

information (MFI) method is the most commonly used in current European tokamaks like 

TCV [1], ASDEX Upgrade [2] or WEST [3]. Although significant progress is made on 
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Tikhonov regularization methods to shorten the inversion time [4], very fast tomography ≤

1𝑚𝑠 with good resolution and real-time capabilities remains a challenging task. 

Neural networks have been recently used in tokamaks for turbulent transport predictions [5] 

and JET bolometers [6], showing promising results in terms of computational time as well as 

quality of reconstruction. Thus, the aim of this contribution is to investigate the use of neural 

networks for fast soft X-ray tomographic reconstructions in the prospect of real-time impurity 

control in tokamak plasmas. 

2. Neural networks 

2.1. The artificial neuron: perceptron and sigmoid neuron 

Neural networks are generally composed of several layers of individual neurons in interaction 

with the neurons of neighboring layers. One single artificial neuron has a simple structure 

including an input vector 𝑥⃗ = (𝑥1, … , 𝑥𝑛) associated with a weight vector 𝑤⃗⃗⃗ = (𝑤1, … , 𝑤𝑛) 

and one neuron output 𝑎 = 𝑓(𝑤⃗⃗⃗. 𝑥⃗ + 𝑏) where 𝑓(𝑧) denotes the neuron activation function 

and 𝑏 is the global neuron bias. The most simple artificial neuron is the perceptron for which 

the neuron activation function is the Heaviside step function: 

𝑓(𝑧) = {
0 𝑖𝑓 𝑧 = 𝑤⃗⃗⃗. 𝑥⃗ + 𝑏 < 0

1 𝑖𝑓 𝑧 = 𝑤⃗⃗⃗. 𝑥⃗ + 𝑏 ≥ 0
 (3) 

The major issue of the perceptron is that its output derivative is the discontinuous Dirac 

distribution, which is not convenient for the learning process. Thus, the sigmoid neuron with 

a smoother activation function is usually preferred: 

𝑓(𝑧) =
1

1 + exp (−𝑧)
 (4) 

A network of such artificial neurons and with a sufficiently high complexity is a priori able 

to fit any multidimensional function in a given input range, by adjusting adequately the 

weights and biases of the neurons. 

2.2. Neural networks with fully-connected layers 

A feedforward neural network with fully-connected layers is made of successive neuron 

layers such that each neuron of the (l+1)-th layer takes its inputs from the output of every 

neuron of the l-th layer as depicted in figure 1. Such structure benefits from a high number 

of connections between neurons and easy numerical implementation, however it can be 

subject to the vanishing gradient issue [7] slowing down the learning of the deepest layers, 

thus only two hidden layers were tested in this work to keep a low numerical cost of the 

training process. 

45th EPS Conference on Plasma Physics P4.1013



 

 

Figure 1. Layout of the neural network adapted to the SXR geometry of Tore Supra. 

 

The mean Square Error (MSE) is used as a cost function 𝐶(𝑤⃗⃗⃗, 𝑏) to quantify the discrepancy 

between the desired outputs 𝑦(𝑥⃗) and outputs from the networks 𝑎(𝑥⃗, 𝑤⃗⃗⃗, 𝑏): 

𝐶(𝑤⃗⃗⃗, 𝑏) =
1

2𝑛
∑[𝑦(𝑥) − 𝑎(𝑥⃗, 𝑤⃗⃗⃗, 𝑏)]2

𝑥⃗

 (5) 

where n is the number of samples (𝑥⃗, 𝑦(𝑥⃗)) in the database. Although an efficient training of 

the neural network is correlated with a decreasing value of the cost function, the network 

should avoid overfitting of the database and still give acceptable results in the desired 

reconstruction range for inputs not included in the database. Therefore, a regularization 

procedure should be applied and a fraction of the database should be preserved for validation 

test. In this work, the cost function was minimized using a stochastic gradient-descent method 

[8] that updates iteratively the weights and biases in the direction of the negative gradient of 

the cost function. The cost function gradient is computed using a backpropagation algorithm 

[9, 10]. A fixed learning rate of 1.0 is used to naturally prevents overfitting of the database. 

The early stopping of the training process, when the validation loss starts to decouple from 

the training loss and to saturate, is a second key element of the regularization. 

3. Preliminary results 

The tomographic tests were performed in the Tore Supra geometry using one input layer of 

82 sigmoid neurons (for the 82 diodes), two hidden layers of 30 neurons each and one output 

layer of 900 neurons (tomogram resolution 30⨯30). A database of 2500 emissivity phantoms 

with different sizes, positions and shapes was used to train the neural network. 90% of the 

samples were devoted to the training process and 10% were kept for the validation test. 

Promising inversion time ~10 − 50𝜇𝑠  and reconstructions of the position, size, shape and 

intensity of the 2D emissivity distribution are obtained as presented in figure 2. 
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Figure 2. (a,b,c) Three emissivity phantoms of the validation database where the SXR emissivity value is 

normalized to 1. (d,e,f) Tomographic reconstructions obtained from the trained neural network. 

 

Several possibilities are foreseen in our future work: the benchmark of the two tomography 

options using either a synthetic database or experimental tomograms from Tikhonov 

regularization, to quantify the advantages and limits of the two approaches; the optimization 

of network parameters (e.g. learning rate, hidden layers) and regularization procedure 

(dropout, weight minimization term in the cost function); and finally the investigation of 

different neural network structures with a focus on deep “de-convolutional” networks [6]. 
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