45" EPS Conference on Plasma Physics P4.1029

Manifold Tracing for Symplectic Maps of Magnetic Field Lines
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Invariant manifolds of unstable closed magnetic field lines (periodic saddles), organize the
dynamics of chaotic field lines in magnetically confined plasmas. In this work we illustrate
their fundamental role to understand the structure of the chaotic field lines and provide insight
into the mechanisms of transport at the plasma edge.

In some situations, the geometry of the manifolds can be estimated through the mapping of a
large collection of orbits close to the periodic saddle. However, without an ordering scheme and
refinement this method is computationally expensive and limited in resolution. To determine the
desired manifolds, we use an interpolation approach based in the curve decomposition in bare
and fine details [1]. The bare details of the curve are determined by a discretization procedure
that determines an appropriate set of nodes containing most of the curve information, while the
fine details are contained in a normal displacement function or shape function which ensures the
smoothness of the manifold. The resulting approximation method gives the invariant manifold
as a continuous parametric curve.

Here, we apply the mentioned method introduced in [1] to obtain the invariant manifolds of
the unstable periodic orbits of the Ullmann Map, a symplectic map describing large aspect-ratio
tokamaks perturbed by a magnetic limiter. We show examples of the manifold tangles obtained
for magnetic islands at the plama edge and how they change with the perturbation amplitude.

Bidimensional symplectic maps have been introduced to describe Poincaré maps of magnetic
field lines in plasmas confined in tokamaks [2, 3]. One of these maps, the Ullmann map [4,
5] has been applied to analyze field lines transport and nonlinear dynamics. In this map, the
equilibrium magnetic field lines are determined by the toroidal current density profile inside the
plasma and the poloidal current in the external toroidal field coils. In the limit of small inverse
aspect ratio, the magnetic axis is surrounded by KAM invariant curves in the Poincaré maps,
without chaos. However, additional external resonant perturbations create magnetic islands and
chaos at the plasma edge.

In this work, a chaotic magnetic field is generated by the magnetic limiter, which is an ex-
ternal current configuration whose magnetic field resonates with the equilibrium field yielding
a magnetic island structure and invariant flux surfaces [4, 5]. Chaotic field lines result from in-

teractions among magnetic islands, with the progressive destruction of magnetic flux surfaces
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as the perturbation strength increases, yielding a magnetic island structure and invariant flux
surfaces. The non-uniformity of the outer chaotic region due to a magnetic limiter determines
the complex distribution of field lines in the plasma edge.

The Ullmann map is written in terms of the cylindrical coordinates r and 0, respectively, the
radius from the geometric axis and the poloidal angle, and ¢ is the toroidal angle. Accordingly,
the large aspect ratio tokamak has a cylindrical geometry, with period 2w R(y. We set the magnetic
limiter rings at the same radius of the tokamak wall.

The analytical expressions for the map are obtained as a composition of two maps. One map
for the equilibrium with toroidal correction, and the other for the external perturbation [4]. Since
the map is derived from a generating function, interpreted as a canonical transformation between
the previous and the next coordinates, the Jacobian for this map is unitary and, consequently,
the map is symplectic.

Here, we use rectangular coordinates x = b0/2x, y=1—r/b, and z = Ry¢. Thus, y =0
corresponds to the plasma edge and y = 1 corresponds to the plasma center. For the numeri-
cal applications, we use the main TCABR tokamak parameters, as a = 0.18m,b = 0.21m and
Ry = 0.61m [6]. We consider a magnetic limiter with 4 rings equally spaced in the toroidal an-
gle, perturbation strengths, indicated in the Fig. 1 and Fig. 2, are typical of magnetic limiters,
EML helical excitation modes (M,N) = (7, 1). The safety factor g¢ represents the unperturbed
orbit helicity, independent of the coordinate 8. However, the toroidal correction introduces a
dependence on 8 and a ripple in the modified invariant curves.

The topology of the magnetic field lines are mapped by their intersections in the section
7 = constant, with variables {x,,y,} denoting the coordinates of the nth intersection of the field
line on the considered section. Figures are obtained from the Ullmann map, simulating tokamak
Poincaré sections with many field line intersections. The figures show a divided phase space
with resonant periodic islands, which appear due to the breaking of equilibrium invariants with
rational safety factors, KAM tori, corresponding to deformed flux surfaces for which the safety
factor is irrational, and a chaotic area-filling lines, which appear due to the homoclinic and/or
heteroclinic crossings of the invariant manifolds of unstable periodic orbits. Locally chaotic
orbits at the resonance borders may fuse, as the perturbation strength builds up, and a globally
chaotic region merges as a consequence (Fig. 2).

The magnetic limiter perturbation creates a chaotic region extending from the plasma edge
to the tokamak inner wall. This chaotic region is not uniform and presents densely intertwined
regions: one from where the field lines hit the tokamak wall with relatively short connection and

another one where the chaotic field lines take a large number of turns before eventually hitting
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the tokamak wall.

For a small perturbation strength, the monotonic Ullmann map presents a chaotic field line
layer at the tokamak edge, and is mostly regular in the remaining of the phase space, as shown
in Figure 1. The g = 5 invariant surface is destroyed and the ressonant island chain is due to the

main mode (m,n) = (5,1).
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Figure 1: Ressonant islands near the plasma edge for 6B, = 0.008B,,,(a). Manifolds of the

period-5 unstable orbit present a characteristic heteroclinic structure.

The chaotic region increases with the perturbation amplitude and becomes more homoge-
neous as can be seen in the Figure 2. Moreover, the perturbation enhancement gives rise to a
peculiar bifurcation where a secondary island emerges in the chaotic region between the domi-

nant island chain.
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Figure 2: Ressonant islands near the plasma edge for . For this perturbation intensity a secondary

set of islands with homoclinic structure emerges.

The new secondary chain has the same mode numbers (5,1) of the original chain. Thus,

in the Figure 2, the resonance (5, 1) presents two sets of period-5 unstable orbits known as
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isochronous [4, 7], which are expected according to the Poincaré-Birkhoff Fixed Point Theo-
rem [7]. The first set belongs to the primary chain of islands and the second to the emerging
secondary chain. Lines transport alteration due to this observed onset of the second isochronous
island chain are presently under investigation. Meanwhile, in Fig. 2 it is observed that the man-
ifold tangle around the new isochronous island presents a homoclinic structure, while continues
to be embeded in the heteroclinic structure of the dominant mangetic island. This type of behav-
ior suggests local magnetic reversing respect to the irregular helical pattern of lower perturba-
tions. Manifold tracing for the presented mappings allows a detailed bifurcation analysis. While
the manifold intersections in the original island are heteroclinic, the manifold intersections in

the smaller second island are homoclinic.
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