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Optimizing 3D spectra for rotation control
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A new matrix formulation utilizing the multi-modal plasma response to optimize multi-coil
spectra for desired neoclassical toroidal viscosity (NTV) torque profiles has been developed in
the Generalized Perturbed Equilibrium Code (GPEC) and applied in experimental optimization
on the DIII-D tokamak. The new GPEC formulation [1] represents the nonlinear torque as a
function of coil array currents, enabling optimization of the coil configurations for maximum,
minimum, core localized, and edge localized NTV torque profiles. Experiments have validated
this model in non-resonant field space where the braking has little impact on density and energy

confinement and is thus ideal for rotation control.
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Figure 1: Torque response matrix (right) for DIII-D shot 170433 and normal field of a corre-
sponding perturbed equilibrium driven by 1 kA n=2 C-coil currents.

The newly developed GPEC model solves for the perturbed kinetic MHD equilibrium and
self consistent NTV torque. The NTV is a second order toroidal torque that comes from the
anisotropy of the kinetic pressure tensor. GPEC includes this pressure tensor in the Euler-
Lagrange solution when finding the eigenfunctions satisfying force-balance in a numerical
method similar to that used in the ideal MHD DCON code [2]. These kinetic MHD eigen-
functions are then used to compile a "torque response matrix" representation of the torque from

every coupling between poloidal modes m and m' [1].
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harmonics, which is correlated with the ideal Figure 2: Localized gdge (blue)’ core (Orange)’

MHD "dominant mode" [3, 4]. There are also and minimum (green) NTV profiles predicted to
be obtainable with the coil arrays on DIII-D.

significant contributions from poloidal mode
coupling between m # m’ in the low poloidal mode numbers and significant torque available
in the non-pitch-resonant negative m, m’ components (this explains the common association be-

tween NTV and non-resonant magnetic perturbations).
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Figure 3: Time series evolution of a representative
shot (170433) from this work showing the injected
torque and power (top), amplitude of the n=2 current tor and of T;bl [T — Te], where T,
each coil array (second), plasma density (third) and
edge rotation (bottom).

ately calculable as the first eigenvec-

is the boundary matrix. A single per-
turbed equilibrium calculation thus pro-
vides the optimal coil configurations for any desired localized (or total) profiles.

To test the theory, and determine the feasibility of NTV profile control with existing coils,
predictions of various NTV profiles were made for the DIII-D ITER Similar Shape (ISS) plasma
in which a significant multi-modal plasma response to n=2 fields was recently observed [4].
Predictions utilizing the two internal "I" coil and one external "C" coil arrays (each having 6

toroidally distributed coils) were made for the maximum, minimum, edge localized, and core
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localized torque as well as for explicitly resonant and non-resonant field configurations. Figure
2 shows that GPEC predicts significant torque profile control within the abilities of the DIII-D
coil sets.

The predictions were tested utilizing data from plasma discharges like the example shown
in Fig. 3, which had an edge safety factor gg5 = 4.2 and a normalized pressure By = 2.5 with
constant beam injection during the flattop. The coils were pulsed on and off with relative n=2
coil current amplitudes and phases predicted to induce each of the desired NTV profiles. The
dynamic response of the density and rotation were measured and analyzed in OMFIT using
2D fitting and processing methods to ensure smooth spatio-temporal evolution of the transport
parameters [7]. An example of the evolution for core (first pulse) and edge (second pulse) NTV

coil configurations is shown in Fig. 4.
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Figure 5 compares the experimentally ob-
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and shows that the experimental NTV torque Figure 4: Smooth spatio-temporal evolution of

obtained from the momentum evolution is 2D fits for pulsed coil configurations predicted
broad in both cases. The breadth agrees well fo induce core (first) and edge (second) NTV.
with the core NTV prediction but not the sharp edge NTV predicted in the second coil pulse.
In Fig. 5 the experimental NTV profiles are calculated from the angular momentum, neutral
beam torque and viscous torque obtained from TRANSP [8]. As TRANSP does not include 3D
effects, it adjusts the momentum diffusivity x, to increase the viscous torque 7,5 and maintain

torque balance when the coils are turned on and the plasma slows. A simple perturbative model

for %, is used to reconstruct a corrected viscous torque Ty [9], and the difference between the
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Figure 5: Experimental torque profiles (left) obtained from the momentum evolution during coil
pulses shown in Fig. 4 compared to the predicted profiles (left).

TRANSP and reconstructed values is designated the "anomalous" NTV torque, Ty7y = Tyisc —
Ty . In the edge resonant case, broad changes in the density present a dual problem in that they
both distort the equilibrium from the modeled state and contribute significantly to the angular
momentum evolution being designated as NTV. The result is that the NTV torque calculated in
this way is broadly distributed for both the core and edge optimized coil configurations.

Despite the density evolution complications in the edge resonant cases, the experimental
application and test of these new GPEC torque matrix predictions represents a significant step
towards new practical applications for rotation profile control. The ultimate rotation is clearly
impacted differently, and this manipulation using the poloidal 3D field spectrum is a direct
application of the multi-mode phenomena [4, 10]. The validated predictions in the non-resonant
space provide a path forward for reduced rotation profile control schemes to optimize 3D fields
for tokamak stability without sacrificing confinement.
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