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The present study is motivated by the lack of tools to study the stability properties of plasma

configurations that include magnetic islands and stochastic regions. These equilibrium solutions

do not assume the existence of nested closed magnetic surfaces and can not be easily tackled

analytically, instead codes like SIESTA [1] construct them numerically. Wendelstein 7-X de-

pends on our capabilities to keep the X-points of its islands and the divertors aligned, hence the

pressing need to understand the stability properties of such configurations.

In astrophysics, a Lagrangian numerical method designed to solve the equation son hydrody-

namics is commonly used to simulate galaxy dynamics, and astrophysical plasmas in general.

The method is called Smoothed Particle Hydrodynamics (SPH) and was first introduced in the

70’s by Gingold and Monaghan [2] together with Lucy [3]. In SPH all fields are "carried by the

particles" and are evaluated via interpolation formulas, in contrast to what is done in other meth-

ods such as particle-in-cell (PIC) codes. This interpolation procedure allows us to discretise the

spatial derivatives on a co-moving frame and to obtain evolution equations for the particle’s

position, velocity, mass density, internal energy and magnetic field.
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The evolution equations of the system (eqs.1, 2, 3 and 4)1 are constructed by identifying

the Lagrangian function of the system, and minimising the corresponding action functional [4].

1Here, W is the interpolating kernel, usually a bell-shaped, gaussian like function. The notation rab is short-

handed for ra−rb and similarly for the velocity and the magnetic field. Wab =W (|rab|) and its gradient is given by:

∇Wab = −rabFab. The factor Ω must be included to account for a spatially varying smoothing lengths H. Finally,

the tensor S is given by −(p+B2/2µ0)I+BB/µ0
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The resulting equation of motion has very desirable conservation properties (mass, momentum,

angular momentum and energy) hard-wired into it. In order to use SPH to simulate the temporal

evolution of MHD systems with fusion-relevant geometries however, we must first overcome to

following two challenges:

1.) Use ghost particles to enforce boundary conditions near smoothly curved walls. Using

ghost particles around flat walls is common use in SPH, however, the inclusion of curved

walls complicates the matter. To solve it, we proceed by expressing the position of the

ghost particle corresponding to particle a, that is a′, in terms of the known position ra via

the map ra′ = ψ(ra) where the map has to fulfil the following differential equation:

∂ψ

∂ s
=− J(s)

J(ψ(s))
with ψ(ra) = ra ∀ ra at the boundary (5)

where J is the Jacobian of the transformation between carteian coordinates {x,y,z} and a

suitable set of coordinates {s,u,v}. The map ψ can be solved exactly for circles, spheres,

cylinders and tori by choosing {s,u,v} to be the usual polar, spherical, cylindrical, and

toroidal coordinates. Once the exact solution for the 2D circle in known, every 2D curve

can be locally approximated with a circle of radius 1/κ where κ is its local curvature.

This opens the possibility of using the ghost particle approach in SPH with any domain

with curved walls.

2.) Replicate arbitrary initial conditions with high-fidelity.

This challenge comes from our need to replicate rigorously, and down to the last detail,

the equilibrium states of SIESTA and VMEC to later study its stability properties. There

are good reasons [5] why to use equal masses for every SPH particle, hence the problem

is not trivial (See eq.1). In fact, this is an inverse problem where the positions of the

particles have to be found so as to give rise to the right mass density.

The ALARIC algorithm [6] was developed to combine well-behaved relaxation tech-

niques with faster and efficient concepts from multi-grid methods. ALARIC made possi-

ble the creation of arbitrarily complex density profiles with an exceptionally low level of

noise. The low levels of numerical noise are crucial to the study of stability properties of

a system since high-fidelity temporal evolution of small perturbations is possible. Fig.1

shows the temporal evolution of the noise level in the initial density profile as a function

of the elapsed time-steps. We see how ALARIC delivers better results in a reasonable

amount of time.
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Figure 1: Initial condition error as function of required

time-steps. ALARIC delivers solutions 2 orders of magni-

tude better, in only 1 order of magnitude more time-steps.

Solving the two previous challenges

allows us to consider cylindrical ge-

ometries of relevance to fusion. As a

first example, a theta-pinch has been

initialised with the equilibrium profiles

listed in [7]. Using the Energy Principle

we determine that any small perturba-

tion to this system will have a positive

growth rate irregardless of the perturba-

tion, hence the system is stable.

Our results are illustrated in fig.2

where the final snapshot (at t = 7tA) of

the theta pinch radial profiles (left) and the constant pressure iso-surfaces of the plasma column

(right) are shown. We can see how the profiles have remain unchanged, and the plasma column

remains perfectly flat. In contrast, fig.3 shows a Zeta pinch after a similar period of time. The

Zeta pinch is predicted to be always unstable against the m = 1 kink modes according to the

Energy principle [7]. We can see how the radial profiles, initially a thin line, become noisy.

The reason behind this can be easily understood by looking at the rightmost part of fig.3 where

the kink instability is visible, and the horizontal displacement of the column displacement will

cause any the radial projection to become noisy.

Figure 2: Theta Pinch final snapshot Figure 3: Zeta Pinch final snapshot

Last, we include resistive dynamics in our SPH implementation. The extension of the usual

MHD equations consist of the two following terms:

dB
dt
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where S is an artificial source term needed to sustain the equilibrium in the presence of

resistivity [8]. As a test, we construct a force-free scenario where the evolution of the magnetic

energy can be modelled analytically. Fig.4 shows the dissipation rate of the magnetic energy

as a function of the wave number of the initial profile. We see how for small wave numbers,

the agreement is perfect however, above a certain wave number, the dissipation rate seems to

saturate. This is because our system can only resolve up to a certain wave number.

Figure 4: Dissipation rate as a function of the wave-

number of the system. For well-resolved scenarios the

agreement is perfect, while for scenarios with less than

two-particles per wavelength (Nyquist wave number) the

dissipation saturates.

In green and purple lines, fig.4 shows

the maximum wave number that can

still be properly sampled (4 parti-

cles/period) and the Nyquist sampling

rate (2 particles/period) respectively.

The correct implementation of resistive

dynamics in the SPH equations allows

us to tackle problems of magnetic re-

connection like the Harris current-sheet

problem where a island is expected to

form within the domain with an O-point

in the upper half of the plane, and a re-

connection X-point in the lower. Fig.5

shows the magnetic field lines after the

island has finally opened up. The posi-

tion of the O and X points agrees with the model.

Figure 5: Island opening in the j×B= 0 ver-

sion of the Harris current sheet test.
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