
A relativistic Langevin approach for
runaway electrons in tokamak plasmas

J. A. Mier1, J. R. Mart́ın-Soĺıs2 and R. Sánchez2
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1 Introduction

Charged particles in plasmas decrease their Coulomb collision frequency as the energy in-
creases. In this context, electrons with energies higher than some critical threshold are con-
tinuously accelerated by the superimposed effects of increasing energy due to the continuous
driving of the electric field and decreasing Coulomb collisionality. These electrons are the so-
called runaway electrons and, when generated in large amounts, for instance in the case of
tokamak disruptions, they could yield serious damage to the structure of the first wall compo-
nents [1].

In this work, a particle approach to the runaway phenomenon, based on the Langevin equa-
tions, including collisional diffusion in momentum space and relativistic effects, has been devel-
oped in order to understand better the runaway dynamics. The Langevin equations constitute
a technique for studying the motion of charged particles under the stochastic effect of Coulomb
collisions with the bulk plasma, allowing to simulate plasma processes in which both collective
kinetics effects and Coulomb collisions take place in the dynamics. Particle simulations of plas-
mas including the stochastic effect of Coulomb collisions by the Monte Carlo treatment or the
Langevin technique have been used to address a wide range of problems [2,3]. The Langevin
approach is equivalent to the Fokker-Planck treatment, which has been extensively used for the
analysis of runaway electron dynamics [4,5]. Synchrotron radiation (SR) losses are also included
in the model which: (1) increase the critical (minimum) electric field for runaway generation;
(2) set a limit on the maximum energy that the runaways can reach.

In a previous work [6], a similar model was studied, but for non-relativistic electrons. Now,
we consider Coulomb collisions between very fast, relativistic electrons and a relatively cold
thermal background plasma. The present model is developed using the stochastic equivalence
of the Fokker-Plank and Langevin equations [7]. The resulting Langevin equation for relativistic
electrons is an stochastic differential equation, amenable to numerical simulations by means of
Monte-Carlo type codes.

2 Relativistic Langevin equations

Langevin equations constitute a particle approach for studying the electron motion under
the stochastic effect of the collisions with the plasma particles, equivalent to the traditional
Fokker-Planck (FP) kinetic approach in the infinite particle limit, but more easily generalized
to more complex geometry [3]. The relativistic Fokker-Planck equation for plasma particle
species α, colliding with target species β which are practically stationary, can be written as,
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In Eq. (1), Ai and Bik are the Fokker-Planck coefficients (see Ref. [8] for more details),
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where nj, mj and qj are the number density, mass and charge of the specie j respectively, ln Λ

is the Coulomb logarithm, γ = (1− v2/c2)
−1/2

is the relativistic gamma factor and the tensors
Pik = (p2δik − pipk)/p3, Γα/β = nβmαq

2
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0 have been introduced. The sum in Eqs.
(2a)-(2b) is over all species β (including α for self-collisions). This coefficients are only valid, as
stated before, when considering Coulomb collisions between very fast, relativistic particles (α)
and much slower, background plasma particles (β), which in fact have been taken as practically
stationary, greatly simplifying the problem.

The Langevin equation for the particle approach is given by,

dpi
dt

= Fi(~p) +Dik(~p)ξk(t), (3)

where ~ξ is a gaussian random variable, with zero mean and unit variance. The coefficients Ai
and Bik in Eq. (1) are related with Fi and Dik in Eq. (3) (see Ref. [3]) by
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, (4)

where the Stratonovich algebra has been used [9]. The resulting Langevin coefficients for the
collisions of relativistic electrons with the frozen bulk electrons and ions (β ≡ e, i) are
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Finally, taking into account these results, the Langevin equation for relativistic runaway elec-
trons, including the force due to the accelerating electric field, eE||/me, the electron and the ion
contributions to the stochastic collision terms, and the electron synchrotron radiation losses,
which can be important at relativistic energies, can be written in normalized form,
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In Eq. (6), ~p is the normalized momentum to the classical momentum at the speed of light,
pcl ≡ mec, and τ ≡ tνee, is the normalized time to the electron collision frequency at the
speed of light, with νee ≡ nee

4 ln Λ/4πε2
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3; ~D ≡ ~E/ER is the normalized electric field,
with ER ≡ (kTe/mec

2)ED, and ED = (nee
3 ln Λ/4πε2

0kTe) is the Dreicer field. Two different

gaussian noises, ~̄ξ and ~̄η, have been considered for the collisions with the bulk electrons and ions
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Fgc, Fgy are parameters describing the two contributions to the radiation losses [10] (the guiding
center motion and the electron gyromotion, respectively), given by Fgc = Fgy(mec/eB0R0)2,
Fgy = 2ε0B

2
0/3ne ln Λme (R0 is the plasma major radius and B0 is the toroidal magnetic field).

Finally, Zeff is the effective ion charge.
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3 Steady-state solution of the relativistic Fokker-Planck equation
without Synchrotron Radiation

The relativistic Langevin equations for runaway electrons can be used to yield the runa-
way distribution function in momentum space. The initial electron velocities are randomly
distributed over a Maxwellian distribution and evolved in time according to Eq. (6). The
advanced distribution function is built by a standard statistical method, until a steady-state
is achieved. Furthermore, an analytic steady-state solution for the distribution function of
runaway electrons, neglecting the radiation losses, can be obtained by imposing the condition
of stationarity in the relativistic Fokker-Planck equation, Eq. (1). This steady-state solution is
found to be fα = Cγ−2, hence fα(p) = C/ (1 + p2), where C is just a normalization constant.
Fig. 1 shows the steady-state distribution functions of runaway electrons obtained in two
different ways: 1) via numerical simulations of the relativistic Langevin equation (blue lines),
and 2) through the analytical solutions of the corresponding relativistic Fokker-Planck equation
(red lines). To appreciate better the agreement between the results of the two models, two

Figure 1: Steady-state probability distribution functions of runaway electrons. (a) Semi-logarithmic
scale, (b) log-log scale. In both cases, blue lines represent simulations using the Langevin code and
red lines represent the analytic solutions of the Fokker-Planck equation.

different scales have been used, log-lin scale in (a) and log-log scale in (b). The tail for the
steady-state distribution of runaway electrons using the Langevin approach in Fig. 1(b) with
a decay exponent of 2 is apparent.

4 Critical electric field for runaway generation and runaway energy
limits

Relativistic effects yield a critical (minimum) electric field for runaway generation, DR = 1
(normalized to ER) [11]. The effect of the radiation on the critical field for runaway generation
is illustrated in Fig. 2(a) which shows DR, obtained from the numerical simulations of the
relativistic Langevin equation, as a function of the radiation parameter Fgy. DR increases with
the strength of the radiation (Fgy) and, when the radiation is negligible (Fgy → 0), DR → 1.
The results are in agreement with the values provided by a test particle description of the
runaway dynamics [10].

Synchrotron radiation also yields a limit on the maximum energy that the runaway electrons
can reach. Indeed, as a result of the radiation losses, the generated runaway electrons pile-up
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Figure 2: (a) Critical electric field DR for runaway generation versus Fgy (γR gives the critical energy
for runaway generation at DR); (b) Runaway energy limit (γl) versus the normalized electric field
(TPM: Test Particle Model).

at a limiting energy, γl, which is shown in Fig. 2(b) as a function of Fgy. Such a limiting energy
is also consistent with that inferred from the simple Test Particle Model (TPM) of the runaway
dynamics.

5 Conclusions

The dynamics of relativistic runaway electrons in tokamak plasmas has been discussed under
the Langevin approach to study the random effect of the collisions with the background electrons
and ions. The work is based on the formalism of Ref. [3]. The novelty with respect previous
works [6] comes from the inclusion of relativistic effects on the runaway electron dynamics as
well as the effect of the synchrotron radiation losses.

The steady-state distribution function for runaway electrons has been calculated. The dis-
tribution of parallel momentum, relative to the external electric field, decreases as a power
law, f(p||) ∼ (1 + p2), which has been obtained through both, the numerical simulation of the
Langevin equation and the analytic solution of the relativistic Fokker-Planck equation.

The inclusion of the synchrotron radiation losses in the runaway dynamics leads to an increase
of the critical electric field for runaway generation (DR > 1), and to a limiting runaway energy,
γl, both consistent with a simple test particle description of the runaway dynamics [10].
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