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Present-day and next step tokamaks will require precise control of plasma conditions, includ-
ing the spatial distribution of rotation and current profiles, in order to optimize performance
and avoid physics and operational constraints. The coupled nonlinear dynamics of equilibrium
profiles and the complex effects of actuators on the equilibrium evolution motivates embedding
physics-based and data-driven models within real-time control algorithms. Due to the important
role of beam heating, current drive, and torque in establishing scenario performance and stabil-
ity, a high-fidelity beam model suitable for use in real-time applications is desired. Motivated
by the successful application of neural networks for rapidly calculating transport and pedestal
pressure [1], this work describes a neural network that has been developed to enable rapid eval-
uation of the beam heating, torque, and current drive profiles based on measured equilibrium
profiles. The training and testing database has been generated from the NUBEAM calcula-
tions output from interpretive TRANSP analysis of shots from the 2016 NSTX-U campaign
[2, 3], augmented with scans of Z, s, fast ion diffusivity, beam voltages, and beam modulation
patterns. Neural network predictions made for the testing data demonstrate the ability of the
model to generalize and accurately reproduce NUBEAM calculated profiles and scalar quan-
tities. Results of processor-in-the-loop simulations of the model within the NSTX-U plasma
control system demonstrate the suitability of the approach for real-time use and accelerated

offline analysis.

Database development

The motivation for the neural network model developed in this work is to approximately
reproduce the results of the NUBEAM code quickly enough to enable use in real-time con-
trol applications, between shots analysis, and scenario optimization on NSTX-U. To this end,
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rather than attempting to create a model that accurately reproduces the entire predictive range
of NUBEAM, which would require generating a comprehensive dataset encompassing the com-
plete physically possible range of all of the inputs to NUBEAM, we focus on a subset of inputs
with ranges defined by the operating space of the NSTX-U’s first campaign in 2016. To generate
the dataset, the interpretive TRANSP runs that are automatically run between NSTX-U shots
were resubmitted with increased NUBEAM fidelity (Sms time steps and 10000 particles). Fur-
thermore, for each shot, a grid scan was defined for key parameters, including Z, s ¢, edge neutral
density, anomalous fast ion diffusivity, and beam voltages. Rather than submitting runs for all
permutations of parameters, a subset of roughly 1000 runs based on approximately 250 shots
was selected at random. The database includes nearly 100,000 time samples. Eighty percent of
the shots in the dataset were randomly assigned to be used for model training, ten percent were
assigned to validation, and the final ten percent were reserved for testing. No NUBEAM results
from the discharges assigned to the testing dataset were used to train models, while validation
data was used to assess accuracy and generalization during hyper parameter tuning. Inputs to
the model were chosen to be beam powers, edge neutral density, Z, r, electron temperature and
density profiles, q profile, and fast ion diffusivity. The outputs to be predicted by the model
were chosen to be the neutron rate, shine through, charge-exchange and orbit loss, and profiles

of beam heating to ions/electrons, beam current drive and torque, and fast ion pressure.

Reduction of profile data and beam slowing down time effects

Radially varying quantities are represented 10
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and evaluation, the radially varying quanti- Profile

ties were projected onto a set of basis func- Figure 1: Modes required to explain 99.5% of vari-
tions. The basis functions for each quantity ance in dataset for each profile compared to the
were chosen by applying principal compo- number of modes kept in the model reduction step.
nent analysis of the dataset and keeping only the most significant modes, typically between
4 and 10. Figure 1 shows the number of modes required to explain 99.5% of the variance in the
dataset for each profile compared to the number of modes kept in the model.

Due to the slowing down time of fast ions, the various effects of a beam on the plasma depend
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Figure 2: Comparison of NubeamNet prediction to NUBEAM calculation for TRANSP run 204991S28:

neutron rate (left), beam driven current at p = 0.053 (center), and fast ion pressure at p = 0.053 (right).

on the time history of the discharge. Therefore, it cannot be expected that a model trained only
on instantaneous values of the inputs should accurately predict the output behavior (unless the
dataset is only made up of steady-state results). While many approaches could be taken to
include time history effects in the model, including recurrent neural networks, the simple but
evidently effective approach taken here is to augment the inputs of the model with a set of causal
low-pass filtered versions of the individual beam powers. To account for the potential range of
slowing-down times possible at different plasma conditions, the beam powers are filtered with
time constants 0.02s, 0.05s, and 0.1s.

Model topology selection and testing results
NubeamNet calculation time

A fully connected neural network topology on NSTX-U real-time computer
was chosen for the models developed in this 1401 : E gi:g;rg
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rameters. To provide improved estimates and

) ) Figure 3: Calculation time as a function of model
a sense of the uncertainty of the estimated val- 8 / f

. complexity tested on the NSTX-U real-time control
ues, an ensemble of 5 models was trained,
computer.
each on a randomly selected subset of the
training dataset and all using the same neural-network topology. The output of the ensemble
is taken to be the average output of the models, and the standard-deviation and range of the
model predictions are used to provide estimates of the uncertainty of the predicted output.

Example comparisons of the NUBEAM calculation and NubeamNet estimation (with 3 layers
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of 125 nodes) for the neutron rate, the current drive at normalize toroidal flux p = 0.053, and
the fast ion pressure at p = 0.1 are shown in Figure 2 for TRANSP run 204991S28. The results
show that the neural network is able to closely approximate the time behavior.

The neural network was implemented in the NSTX-U real-time computer and a scan of model
topology was conducted to assess the scaling of calculation time with model complexity. Re-
sults, shown in Figure 3, show that models with complexity near that required to optimize the
model fit can be run within the typical 200us cycle time of the NSTX-U control system. Recent
advances in real-time PCle-based internode communication in the NSTX-U control system [4]
will enable offloading calculations to a dedicated computer with enough cores to simultane-
ously calculate the models for uncertainty quantification as well as calculation of the sensitivity

of outputs to changes in inputs needed by real-time control and optimization algorithms.

Discussion

A neural network model for evaluating the beam heating, current drive, torque, and other
effects of the NSTX-U neutral beam system on the plasma has been developed. The model was
trained on NUBEAM results calculated for the discharges in the first NSTX-U campaign. The
speed of the resulting model makes it well-suited for many real-time applications on NSTX-U,
including equilibrium reconstruction and profile control [5, 6]. Future work will include de-
veloping training sets and models based on predicted discharges to make the model useful for
planning future NSTX-U campaigns that are not within the operating range explored in the first
campaign. Alternative approaches to handling the time-history dependence, including recurrent

neural networks, will be also be explored.
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