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Understanding and being able to predict core turbulent (or anomalous) transport, in order to

mitigate it, is crucial to achieve controlled fusion energy[1]. We investigate the energy depen-

dance of the radial heat flux with the gyrokinetic code TERESA (Trapped Element REduction

in Semi lagrangian Approach)[2, 3, 4, 5, 6, 7, 8]. The model enables the processing of the full

f problem for trapped ions and electrons at very low numerical cost, although the study here

focuses on trapped ions. We then compare the results to the predictions from the quasi-linear

theory (QLT). Both heat fluxes from TERESA and the QLT are in qualitative agreement but

shows a quantitative error. The source of discrepancy is that the QLT neglect some nonlinear

coupling that are in fact of the same order of magnitude of some non-neglected terms. Both heat

fluxes present a peak at a resonance energy and resonant particles account for the majority of

the heat flux.

Trapped particles

The motion of a single trapped particle in a tokamak can be divided into three parts: The fast

cyclotron motion (ωc, ρc), the bounce (or "banana") motion (ωb, δb), and the precession drift

along the toroidal direction (ωd , R), with ωd � ωb� ωc and ρc� δb� R (See Fig.1).

The turbulence driven by trapped particles is characterized by frequencies of the order of

the precession frequency ωd . Averaging over both cyclotron and bounce motions filters the fast

frequencies ωc and ωb and the small space scales ρc and δb. It reduces the dimensionality of the

kinetic model from 6D to 4D:

f̄s = f̄κ,E(ψ,α)

with f̄s the "banana center" distribution function, α = ϕ − qθ and ψ the poloidal flux (dψ ∼

−rdr). ϕ and θ are the toroidal and poloidal coordinates, and q is the safety factor. Only two ki-

netic variables appear in the differential operators. The two other variables appear as parameters

- two exact invariants, namely particle kinetic energy E and κ the pitch angle.

Model

Although TERESA allows kinetic trapped ions and electrons, here we solely focus on ions.

The Vlasov equation for the ion banana center distribution function f (we omit the f̄ notation
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Figure 1: Motion of trapped particles in a tokamak (source : EUROfusion).

for clarity) writes:
∂ f
∂ t
− [J0φ , f ]

α,ψ +EΩd
∂ f
∂α

= 0 (1)

where φ is the plasma electrostatic potential, EΩd is the energy-dependent precession fre-

quency, [g,h]
α,ψ = ∂αg∂ψh− ∂αh∂ψg are the Poisson bracket, and J0 is the gyro-bounce-

averaging operator.

The normalized quasi-neutrality constraint writes:

C1
[
φ −〈φ〉α +F−1 (iδmφ̂m

)]
−C2∆̄φ =

2√
π

∫
∞

0
J0(E) f

√
EdE−1 (2)

where F−1 is the inverse Fourier transform, δm is the electron dissipation which takes into ac-

count the effects of electrons-ions collisions, expressed as a phase-shift between electron density

and perturbed electric potential[8], φ̂m is the m-th component of the Fourier decomposition in α

of φ . C1 = τC2/ fp and C2 = eωd,0Lψ/T0 are dimensionless, constant input parameters, which

account for the fraction of trapped particles fp and ion/electron temperature ratio τ , ∆̄φ is the

polarization term of the quasi-neutrality equation, with ∆̄ =
(q0ρ0

a

)2 ∂ 2

∂α2 +δ 2
b

∂ 2

∂ψ2 .

A semi-Lagrangian scheme is used in order to solve the Vlasov equations. To solve the quasi-

neutrality, the fields are first projected in the Fourier space along the periodic direction α and

then the electric potential φ is a solution of a second order differential equation in ψ .

Quasi-linear theory (QLT)

The QLT main hypothesis are : a weak turbulence, particles are not trapped inside “potential

wells”, and a small correlation time of the electric field compared to the evolution time of the
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profiles.

Once we inject the linear response of f and φ in the Vlasov equation we obtain :

∂ 〈 f 〉
∂ t

=
∂

∂ψ

[
DQL

∂ 〈 f 〉
∂ψ

]
, (3)

with

DQL(ψ,E, t) = ∑
l

l2 ∣∣φ̂l(ψ, t)
∣∣2 1− e−i(ωR,l−ωl)t−γlt

i(ωR,l−ωl)+ γl
, (4)

where the sum ∑l is over the l components of the Fourier decomposition in α of φ , noted

φ̂l(ψ, t). γl and ωl are respectively the growth rate and frequency of each Trapped Ion Mode

(TIM) l obtained from the linear dispersion relation[5, 6], and ωR,l(ψ,E, t) = l
(

ΩdE
Z + ∂ φ̂0

∂ψ

)
is

homogeneous to a pulsation and takes into account the Doppler effect from the zonal flow.

The QL heat flux is then given by

qQL(ψ, t) =
∫

E
DQL

∂ 〈 f 〉
∂ψ

E ′
√

E ′dE ′ (5)

The velocity space is linked to the energy space as d3v =C
√

EdE, therefore we include a
√

E

factor inside the integral over energy space to physically integrate over the velocities.

QL and NL heat fluxes in real and in energy space

We compare the heat flux obtained from a nonlinear simulation with TERESA, to the QL

prediction in the real space (ψ), Fig. 2a, and in the velocity/energy space, Fig. 2b.

The QL and NL heat fluxes are in qualitative agreement but the QL calculation shows a sig-

nificant quantitative error. Both are negative for E < 1.5 because of the Maxwellian nature of

the equilibrium function feq. The resonant particles contribute the most to the heat fluxes. The

position of the resonant peak in energy E is determined by the resonance condition of the most

intense toroidal modes at t = 5 and ψ = 0.5.
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Figure 2: Fig. 2a QL and NL heat fluxes at t = 5 as a function of ψ . The buffer zone consist in an

artificial diffusion in the greyed out area. Fig. 2b QL and NL heat fluxes at t = 5 and ψ = 0.5 in the

energy space.

Conclusion

We took advantage of the TERESA code to run a simulation with great accuracy in E space

without sacrificing the precision in real space. We thus obtained from the nonlinear (NL) sim-

ulation the heat flux in real space (ψ), and its details in energy space. We compared these NL

results to the predictions from the QLT which take into account the effect of the zonal radial

electric field. The QL and NL heat fluxes are in qualitative agreement although the QL calcu-

lation shows a significant quantitative error. The source of discrepancy is that the QLT neglect

some nonlinear coupling that are in fact of the same order of magnitude of some non-neglected

terms (as checked directly in the simulation). In the energy space, both present a peak at a reso-

nant energy and the resonant particles are the main contribution to the heat flux. The position of

the resonance in E space is determined by the most intense toroidal modes and by the intensity

of the zonal radial electric field.
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