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The helicity plays an essential role in mediating the spectral transfer of energy leading to

generation of cuasi-coherent structures from turbulence in 3D flows. In two dimensions the

inverse cascade naturally obtains at asymptotic relaxation a large scale ordered structure of

the flow but in 3D it seems that only the breaking of the parity symmetry can induce inverse

spectral transfer. For a turbulent fluid/plasma the parity non-invariance means that small scale

filaments with helical geometry results from nonlinear mode coupling. It has been shown that

the helical filaments evolve through coalescence to even larger helical structures. We suggest

that the formation of large scale quasi-coherent pattern of flow, including the zonal flows and

the H-mode rotation layer, out from turbulence is only possible if the turbulence is parity-

non-invariant. The presence of helicity extends the self-organization process, which is typical

only for 2D, somehow further in 3D where the natural expectation would be direct cascade to

dissipative scales.

In the following we discuss briefly the fundament of the helicity-mediated large scale orga-

nization, the statistical correlation when helicity is present and we formulate a proposal for the

study of the "cancellation exponent" of helicity fluctuations in numerical simulations.

Nature of structure formation in a parity-breaking turbulence

For plasma there are three measures of helicity: kinetic v ·ω , magnetic A ·B and mixed v ·B.

We confine to the first type. The importance of the vorticity in plasma flows at all scales is

known. The most familiar quasi-three-dimensional model of plasma is Hasegawa-Mima, for

which the Boltzmann distribution of electrons along the field line suppresses the convective

nonlinearity (−∇φ×n̂ ·∇φ = 0) and puts emphasis on the vectorial nonlinearity. However in

many cases the two-dimensional Euler equation is a good description dω/dt = 0. For the ideal

2D Euler fluid the dynamics of the vorticity is reducible to the motion of a discrete set of point-

like vortices interacting as:
·
xs,i = εs j∂ j

N
∑

j=1, j �=i
ω j ln

(∣∣xi −x j
∣∣) with xs=1,2 ≡ (x,y), i = 1,N, and

where ω j =±ω0. Each point-like vortex can be represented as a spinor and the continuum field

as a mixed spinor xα
·
β , a 2×2 complex matrix which incorporates the time-forward propagating

spinors (positive elementary vortex) and time-backward propagating spinors (negative elemen-

tary vortex). xα
·
β ≡ φ is a representation of the algebra sl (2,C). Physical vorticity should not

exist in 2D since v is in plane and ω = ∇×v is perpendicular on the plane, resulting v ·ω = 0.
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However reduction to 2D means that any translation along the direction perpendicular leave

invariant the physics and then we can define, as for the massless fermions, σ ·p
|p| =helicity which

identifies the helicity with the chirality. We have formulated a field theoretical model with a

Lagrangian where the matter field φ (mixed spinor) has non-relativistic dynamics and self-

interaction of the type tr
([

φ†,φ
]2
)

and the gauge field is governed by the Chern-Simons term,

a generalization of the helicity, ε i jkAi∂ jAk ∼ A ·B . We have demonstrated the following prop-

erty of this system. It can be reduced to a local problem of interaction between an elementary

vortex and a fixed, large scale vortex, a scattering problem that reduces the equations of mo-

tion to usual Dirac equations for a scattering problem. Then the difference between the positive

vortices and the negative vortices becomes clear: the like sign vortices are attracting and the

opposite-sign vortices a repelled. This is very important. We then understand that the dynamics

of the 2D ideal Euler fluid consists of separation and clusterization of vortices of like signs.

We naturally extend such conclusion to the elementary helical filaments and assert that the

like-sign helical filaments will attract mutually and will coalesce, increasing the separation of

the two kinds of helicity and their clusterization into large scale patterns of flow.

We consider that this is the fundament for the property of parity-noninvariant turbulent fields

to evolve to large scale structures, via separation and clusterization of helicity.

The statistical transfer of energy from turbulence to coherent structure in a parity-

breaking turbulence.

This is illustrated by a classical Rayleigh Benard setting, according to the treatment of Moi-

seev et al [1]. The gradient of temperature ρ = ρ0 (1−βT ) is along the z direction, perpendic-

ular on the plane (x,y). The equilibrium state consists of the profiles T0 (z) and p0 (z), with

T0 (z) =−Aêz. The equation for velocity

∂vi

∂ t
+ vk

∂vi

∂xk =− 1
ρ

∂ p
∂xi +βT gei+νΔvi

together with the equation for temperature perturbation and the incompressibility. A random

external force to create tubulence 〈Fi〉= 0. The correlation function

QT
i j (t1− t2,k) = B(t1− t2,k)

(
δi j − kik j

k2

)
+ iG(t1− t2,k)εi jlkl

where 〈v·(∇×v)〉 ∼ ∫
k2dk G(τ1 − t2,k). Note the presence of the pseudotensor εi jl and the

pseudoscalar G(t,k). In a similar context, Chechkin [2] shows explicitely the content of the

correlation of the fluctuating field, with the occurence of the imaginary term in k space, asso-

ciated to the parity-non-invariance. Assume the electric field is fluctuating, the correlations are,
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in real space 〈
EiE j

〉
= A(R,τ)δi j +B(R,τ)RiR j +G(R,τ)εi jmRm

or in Fourier space〈
EiE j

〉
k,ω = A(k,ω)δi j +B(k,ω)

kik j

k2 + iG(k,ω)εi jm
km

k2

The set of equations is solved for the temperature which is then replaced in the velocity

equation

Li jv j =−DχPim
∂

∂xk (vkvm)−βAgPimeme j
∂

∂xk

(
vk

1
Dχ

v j

)
+Fi

with the operators Li j = DνDχδi j − βAgPimeme j, Dν = ∂
∂ t − νΔ, Dχ = ∂

∂ t − χΔ, and Pim =

δim− 1
Δ

∂
∂xi

∂
∂xm . The fluctuating field of velocity must be decomposed vi = 〈vi〉+ vT

i + ṽi.

For the average Li j
〈
v j
〉

and the fluctuating part Li jṽ j we calculate the correlations, using the

functional dependence of ṽk on
〈
v j
〉

and on vT
j , using the Furutsu-Novikov formula〈

vT
k (t,x) ṽm (t,x)

〉
= lim

t1→t,x1→x

∫
ds

∫
dy

〈
vT

k (t,x)vT
r (s,y)

〉〈δ ṽm (t1,x1)

δvT
r (s,y)

〉
The second average, of the functional derivative, can be calculated formally from the solution

of the equation of ṽm. 〈
δ ṽ (t,x)

δvT
s (s,y)

〉
=−L−1

ji

{
DχPim 〈vk〉 ∂

∂xk

〈
δvT

m (t,x)
δvT

r (s,y)

〉
+βAgPim 〈vk〉 ∂

∂xk D−1
χ

〈
δvT

j (t,x)

δvT
r (s,y)

〉}

Now we will assume an explicit form G(t − s,k)=G0
u2λ 4

(1+λ2k2)
2 exp

[
−|t−s|

τ

]
and it is possible

to calculate

Mk j (t,x) =
〈

ṽk (t,x)D−1
χ vT

j (t,x)
〉
+
〈

vT
k (t,x) D−1

χ ṽ j (t,x)
〉

with the result

Mk j (t,x) =
4π
3

εk ja 〈va〉 G0

(2π)3
π
2

u2τ2

λ
×W (ν,λ ,χ ,τ)

where W is an expression of the viscosities. This correlation shows the coupling and energy

transfer between the turbulent fluctuations vT and the correction ṽ to the main flow.

The sign-singularity of the helicity fluctuations

We argue that there may be a systematic statistics of the helicity fluctuations and that it can

be "measured", most easily, from numerical simulations of plasma turbulence.

45th EPS Conference on Plasma Physics P4.1104



The local values of the velocity and vorticity produce a local fluctuating kinetic helicity h,

which can be seen as helical lines of flow with positive or negative linking relative to a fixed

reference line. This fluctuating chirality can be reduced to a change of sign of this linking. The

strong oscillations of the signs (i.e. positive and negative helicity) are an indication of the "sign

singularity" [3]. It is introduced by μr (Li) =
∫

Li(r)h(r)/
∫

L |h(r)| where Li (r)⊂ L is a hyerarchy

of a disjoint subsets of size r covering the full domain L. The expected value of |μr (Li)| at

scale r defines χ (r) = ∑
Li(r)

|μr (Li)| for which Ott et al. have conjectured that exhibits a scaling

lim
r→0

log χ(r)
log r =−κ . If χ (r) increases as r → 0 then κ > 0 and the measure is said "sign-singular".

κ is called "cancellation exponent".

In the case of tokamak turbulence, the spectrum of μr (Li) results from the wide range of

relevant physical scales, between ρs and the large radial extension of tilted eddies or the tran-

sient coherent structures. We can expect a fast oscillation of helicity’s signs in the small scales

∼ ρs where nonlinear coupling of drift waves generates random transfers of energy and transient

structures of the helical lines of flow having left or right helicity. A non-zero cancellation coeffi-

cient κ indicates unbalanced cancellations i.e. the dominance of some chirality and is equivalent

to loss of parity invariance of the fluctuating potential of the turbulent field [4]. There are sev-

eral possible sources for κ �= 0, of which we can retain the tilting instability, where the role

of the scalar nonlinearity (distinct from the vectorial, Hasegawa-Mima nonlinearity) becomes

manifest. The scalar nonlinearity φ∂φ/∂y is obviously non-parity-invariant. A correlation be-

tween the enhanced role of the scalar nonlinearity and the magnitude of κ should be measured

in numerical simulations.

In Conclusion the helicity is a part of the "vorticity dynamo" and is present in plasma tur-

bulence. Technically, the random generation of helicity can be described by a scalar field that

multiplies the Chern-Simon topological charge, like in baryogenesis. It is rather surprising to

find purely classical realisation of the axial anomaly.
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